Esempio n. 1
0
def prepare(data_valid, sae):
    gen_batch = 10000 if len(data_valid) < 2000 else None
    data_mixed = generate_random(data_valid, sae, gen_batch)
    try:
        p = 0
        pp = 0
        ppp = 0
        while len(data_mixed) < len(data_valid) and p < len(data_mixed):
            p = pp
            pp = ppp
            ppp = len(data_mixed)
            data_mixed = union(data_mixed,
                               generate_random(data_valid, sae, gen_batch))
            print(
                "valid:", len(data_valid), "mixed:", len(data_mixed),
                "## generation stops when it failed to generate new examples three times in a row"
            )
    except KeyboardInterrupt:
        pass
    finally:
        print("generation stopped")

    if len(data_valid) < len(data_mixed):
        # downsample
        data_mixed = data_mixed[:len(data_valid)]
    else:
        # oversample
        data_mixed = np.repeat(data_mixed,
                               1 + (len(data_valid) // len(data_mixed)),
                               axis=0)
        data_mixed = data_mixed[:len(data_valid)]

    train_in, train_out, test_in, test_out = prepare_binary_classification_data(
        data_valid, data_mixed)
    return train_in, train_out, test_in, test_out, data_valid, data_mixed
Esempio n. 2
0
def prepare_oae_PU(known_transisitons):
    print(
        "discriminate correct transitions and other transitions generated by OAE"
    )
    y = generate_oae_action(known_transisitons)
    # normalize
    y = y[:len(known_transisitons)]
    return (default_networks['PUDiscriminator'],
            *prepare_binary_classification_data(known_transisitons, y))
Esempio n. 3
0
def prepare(data_valid):
    print(data_valid.shape)
    batch = data_valid.shape[0]
    N = data_valid.shape[1]
    data_invalid = np.random.randint(0,2,(batch,N),dtype=np.int8)
    print(data_valid.shape,data_invalid.shape)
    ai = data_invalid.view([('', data_invalid.dtype)] * N)
    av = data_valid.view  ([('', data_valid.dtype)]   * N)
    data_invalid = np.setdiff1d(ai, av).view(data_valid.dtype).reshape((-1, N))

    return prepare_binary_classification_data(data_valid, data_invalid)
Esempio n. 4
0
def prepare_oae_per_action_PU3(known_transisitons):

    print("", sep="\n")
    N = known_transisitons.shape[1] // 2
    states = known_transisitons.reshape(-1, N)

    oae = default_networks['ActionAE'](ae.local("_aae/")).load()
    actions = oae.encode_action(known_transisitons,
                                batch_size=1000).round().astype(int)
    L = actions.shape[2]
    assert L > 1

    histogram = np.squeeze(actions.sum(axis=0))
    print(histogram)

    sd3 = default_networks['PUDiscriminator'](ae.local("_sd3/")).load()
    try:
        cae = default_networks['SimpleCAE'](sae.local("_cae/")).load()
        combined_discriminator = default_networks['CombinedDiscriminator'](ae,
                                                                           cae,
                                                                           sd3)
    except:
        combined_discriminator = default_networks['CombinedDiscriminator2'](
            ae, sd3)

    for label in range(L):
        print("label", label)
        known_transisitons_for_this_label = known_transisitons[np.where(
            actions[:, :, label] > 0.5)[0]]
        if len(known_transisitons_for_this_label) == 0:
            yield None
        else:
            _actions = np.zeros(
                (len(states), actions.shape[1], actions.shape[2]), dtype=int)
            _actions[:, :, label] = 1

            y = oae.decode([states, _actions],
                           batch_size=1000).round().astype(np.int8)

            # prune invalid states
            ind = np.where(
                np.squeeze(combined_discriminator(y[:, N:], batch_size=1000)) >
                0.5)[0]
            y = y[ind]

            y = set_difference(y, known_transisitons_for_this_label)
            print(y.shape, known_transisitons_for_this_label.shape)

            train_in, train_out, test_in, test_out = prepare_binary_classification_data(
                known_transisitons_for_this_label, y)
            yield (train_in, train_out, test_in, test_out)
Esempio n. 5
0
def prepare_oae_validated(known_transisitons):
    print(
        "generate many actions from states using OEA (at least one action for each state is correct)",
        "validate it with validators, then discriminate the correct vs wrong transitions.",
        sep="\n")
    print("**** CHEATING ****")
    N = known_transisitons.shape[1] // 2
    y = generate_oae_action(known_transisitons)

    p = latplan.util.puzzle_module(sae.path)
    batch = 100000
    valid_suc = np.zeros(len(y), dtype=bool)
    for i in range(1 + len(y) // batch):
        print(i, "/", len(y) // batch)
        suc_images = sae.decode_binary(y[batch * i:batch * (i + 1), N:],
                                       batch_size=1000)
        valid_suc[batch * i:batch * (i + 1)] = p.validate_states(
            suc_images, verbose=False, batch_size=1000)
        # This state validation is just for reducing the later effort for validating transitions

    before_len = len(y)
    y = y[valid_suc]
    print("removing invalid successor states:", before_len, "->", len(y))

    answers = np.zeros(len(y), dtype=int)
    for i in range(1 + len(y) // batch):
        print(i, "/", len(y) // batch)
        pre_images = sae.decode_binary(y[batch * i:batch * (i + 1), :N],
                                       batch_size=1000)
        suc_images = sae.decode_binary(y[batch * i:batch * (i + 1), N:],
                                       batch_size=1000)
        answers[batch * i:batch * (i + 1)] = np.array(
            p.validate_transitions([pre_images, suc_images],
                                   batch_size=1000)).astype(int)

    l = len(y)
    positive = np.count_nonzero(answers)
    print(positive, l - positive)

    y_positive = y[answers.astype(bool)]
    y_negative = y[(1 - answers).astype(bool)]
    y_negative = y_negative[:len(y_positive)]

    return (default_networks['Discriminator'],
            *prepare_binary_classification_data(y_positive, y_negative))
Esempio n. 6
0
def prepare(data):
    print(
        "discriminate correct transitions and nop, suc-permutation, reconstructable, and random bits combined"
    )
    print(
        "**** does not discriminate OEA-generated states quite well, do not use ****"
    )
    data_invalid = np.concatenate(tuple([
        generate_nop(data), *[permute_suc(data) for i in range(inflation)],
        *[generate_random_action(data, sae) for i in range(inflation)],
        *[generate_random_action2(data) for i in range(inflation)]
    ]),
                                  axis=0)

    data_valid = np.repeat(data, len(data_invalid) // len(data), axis=0)

    return (default_networks['PUDiscriminator'],
            *prepare_binary_classification_data(data_valid, data_invalid))
Esempio n. 7
0
def prepare_oae_PU5(known_transisitons):
    print("Learn from pre + suc + action label",
          "*** INCOMPATIBLE MODEL! ***",
          sep="\n")
    N = known_transisitons.shape[1] // 2

    y = generate_oae_action(known_transisitons)

    ind = np.where(np.squeeze(combined(y[:, N:])) > 0.5)[0]

    y = y[ind]

    actions = oae.encode_action(known_transisitons, batch_size=1000).round()
    positive = np.concatenate((known_transisitons, np.squeeze(actions)),
                              axis=1)
    actions = oae.encode_action(y, batch_size=1000).round()
    negative = np.concatenate((y, np.squeeze(actions)), axis=1)
    # random.shuffle(negative)
    # negative = negative[:len(positive)]
    # normalize
    return (default_networks['PUDiscriminator'],
            *prepare_binary_classification_data(positive, negative))
Esempio n. 8
0
def learn(path):
    network = latplan.model.get('PUDiscriminator')
    true_actions = np.loadtxt(sae.local("actions.csv"), dtype=np.int8)
    fake_actions = np.loadtxt(aae.local("fake_actions.csv"), dtype=np.int8)
    train_in, train_out, val_in, val_out = prepare_binary_classification_data(
        true_actions, fake_actions)
    discriminator, _, _ = grid_search(
        curry(
            nn_task,
            network,
            path,
            train_in,
            train_out,
            val_in,
            val_out,
        ),
        default_parameters,
        parameters,
        path,
    )
    discriminator.save()
    return discriminator
Esempio n. 9
0
def prepare_oae_PU3(known_transisitons):
    print(
        "discriminate the correct transitions and the other transitions generated by OAE,",
        " filtered by the learned state discriminator",
        sep="\n")
    N = known_transisitons.shape[1] // 2
    y = generate_oae_action(known_transisitons)

    print("removing invalid successors (sd3)")
    ind = np.where(np.squeeze(combined(y[:, N:])) > 0.5)[0]

    y = y[ind]
    if len(known_transisitons) > 100:
        y = y[:len(known_transisitons)]  # undersample

    print(
        "valid:",
        len(known_transisitons),
        "mixed:",
        len(y),
    )
    print("creating binary classification labels")
    return (default_networks['PUDiscriminator'],
            *prepare_binary_classification_data(known_transisitons, y))
Esempio n. 10
0
def prepare_oae_PU2(known_transisitons):
    print(
        "discriminate the correct transitions and the other transitions generated by OAE, filtered by the state validator"
    )
    print("**** CHEATING ****")
    N = known_transisitons.shape[1] // 2
    y = generate_oae_action(known_transisitons)
    p = latplan.util.puzzle_module(sae.path)
    batch = 100000
    valid_suc = np.zeros(len(y), dtype=bool)
    for i in range(1 + len(y) // batch):
        print(i, "/", len(y) // batch)
        suc_images = sae.decode_binary(y[batch * i:batch * (i + 1), N:],
                                       batch_size=1000)
        valid_suc[batch * i:batch * (i + 1)] = p.validate_states(
            suc_images, verbose=False, batch_size=1000)

    before_len = len(y)
    y = y[valid_suc]
    print("removing invalid successor states:", before_len, "->", len(y))
    y = y[:len(known_transisitons)]
    # normalize
    return (default_networks['PUDiscriminator'],
            *prepare_binary_classification_data(known_transisitons, y))
Esempio n. 11
0
def prepare_random(data_valid, sae, inflation=1):
    batch = data_valid.shape[0]
    data_mixed = random.randint(0,2,data_valid.shape,dtype=np.int8)
    train_in, train_out, test_in, test_out = prepare_binary_classification_data(data_valid, data_mixed)
    return train_in, train_out, test_in, test_out, data_valid, data_mixed