def train(self,
              X,
              y,
              num_passes=1000,
              lr=0.01,
              regularization=0.01,
              to_print=True):
        # add gates
        m_Gate = MultiplyGate()
        a_Gate = AddGate()

        # activate nonlinear layer
        if self.activation_func == 'sigmoid':
            layer = Sigmoid()
        elif self.activation_func == 'tanh':
            layer = Tanh()

        # activate output layer
        if self.output_func == 'softmax':
            output = Softmax()
        elif self.output_func == 'lse':
            output = LSE()

        # for each epoch
        for epoch in range(num_passes):
            # Forward propagation
            input = X
            forward = [(None, None, input)]

            # for each layer except the last one
            for i in range(len(self.W)):
                mul = m_Gate.forward(self.W[i], input)
                add = a_Gate.forward(mul, self.b[i])
                input = layer.forward(add)
                forward.append((mul, add, input))

            # last output of forward propagation is an array: num_samples * num_neurons_last_layer

            # Back propagation
            # derivative of cumulative error from output layer
            dfunc = output.calc_diff(forward[len(forward) - 1][2], y)
            for i in range(len(forward) - 1, 0, -1):
                # 1 layer consists of mul, add and layer
                dadd = layer.backward(forward[i][1], dfunc)

                # dLdb and dLdmul are functions of dLdadd
                db, dmul = a_Gate.backward(forward[i][0], self.b[i - 1], dadd)
                dW, dfunc = m_Gate.backward(self.W[i - 1], forward[i - 1][2],
                                            dmul)

                # Add regularization terms (b1 and b2 don't have regularization terms)
                dW += regularization * self.W[i - 1]

                # Gradient descent parameter update
                self.b[i - 1] += -lr * db
                self.W[i - 1] += -lr * dW

            if to_print and epoch % 100 == 0:
                print("Loss after iteration %i: %f" %
                      (epoch, self.calculate_loss(X, y)))
    def calculate_loss(self, X, y):
        m_Gate = MultiplyGate()
        a_Gate = AddGate()

        if self.activation_func == 'sigmoid':
            layer = Sigmoid()
        elif self.activation_func == 'tanh':
            layer = Tanh()

        if self.output_func == 'softmax':
            output = Softmax()
        elif self.output_func == 'lse':
            output = LSE()

        input = X
        # loop through each layer
        for i in range(len(self.W)):
            # X*W
            mul = m_Gate.forward(self.W[i], input)

            # X*W + b
            add = a_Gate.forward(mul, self.b[i])

            # nonlinear activation
            input = layer.forward(add)

        return output.eval_error(input, y)
    def predict(self, X):
        m_Gate = MultiplyGate()
        a_Gate = AddGate()

        if self.activation_func == 'sigmoid':
            layer = Sigmoid()
        elif self.activation_func == 'tanh':
            layer = Tanh()

        if self.output_func == 'softmax':
            output = Softmax()
        elif self.output_func == 'lse':
            output = LSE()

        input = X
        for i in range(len(self.W)):
            mul = m_Gate.forward(self.W[i], input)
            add = a_Gate.forward(mul, self.b[i])
            input = layer.forward(add)

        if self.output_func == 'softmax':
            probs = output.eval(input)
            return np.argmax(probs, axis=1)
        elif self.output_func == 'lse':
            return (np.greater(input, 0.5)) * 1
    def build(self, input_size, output_size, hidden_layer_units):

        np.random.seed(7)
        self.input_size = input_size
        self.output_size = output_size

        self.layers.append(Sigmoid(input_size, hidden_layer_units[0]))
        for i in range(1, len(hidden_layer_units)):
            self.layers.append(
                Sigmoid(hidden_layer_units[i - 1], hidden_layer_units[i]))

        self.layers.append(Softmax(hidden_layer_units[i], output_size))
Esempio n. 5
0
 def inference(index: int, m: int, d: int) -> Dict[str, dict]:
     """Build matmul-bn-activation specifications
     Args:
         index: stack position in the network
         m: number of outputs (== number of nodes)
         d: number of features in the input
     """
     return {
         f"matmul{index:03d}":
         Matmul.specification(
             name=f"matmul{index:03d}",
             num_nodes=m,
             num_features=d,
             weights_initialization_scheme="he",
             weights_optimizer_specification=optimizer.SGD.specification(
                 lr=0.05, l2=1e-3)),
         f"bn{index:03d}":
         BatchNormalization.specification(
             name=f"bn{index:03d}",
             num_nodes=m,
             gamma_optimizer_specification=optimizer.SGD.specification(
                 lr=0.05, l2=1e-3),
             beta_optimizer_specification=optimizer.SGD.specification(
                 lr=0.05,
                 l2=1e-3,
             ),
             momentum=0.9),
         f"activation{index:03d}":
         ReLU.specification(
             name=f"relu{index:03d}",
             num_nodes=m,
         ) if activation == ReLU.class_id() else Sigmoid.specification(
             name=f"sigmoid{index:03d}",
             num_nodes=m,
         )
     }
Esempio n. 6
0
 def build_network(self, *d, **types):
     """
     Method to build a neural network structure
     """
     # check number of layers
     Nlayers = len(d)
     if Nlayers < 2:
         print(
             "ERROR: A neural network needs at least an input and an output layer!"
         )
         exit(1)
     if types.has_key("verbose"):
         self.verbose = types.get("verbose")
     # check if the user specified the scope of the network
     # if not set it to classification
     if types.has_key("scope"):
         self.scope = types.get("scope")
     else:
         self.scope = "classification"
     # check if the user specified the types of layers
     # if not set to default types
     if types.has_key("out_type"):
         self.out_type = types.get("out_type")
     else:
         if d[Nlayers - 1] == 1:
             self.out_type = "linear"
         else:
             self.out_type = "softmax"
     if types.has_key("hidden_type"):
         self.hidden_type = types.get("hidden_type")
     else:
         if Nlayers > 2:
             self.hidden_type = "tanh"
     # add layers to the neural network
     # add input layers
     self.layers.append(Layer(d[0]))
     # if present, add hidden layers
     if Nlayers > 2:
         if self.hidden_type == "tanh":
             for i in range(1, Nlayers - 1):
                 self.layers.append(Tanh(d[i], d[i - 1]))
                 self.layers[i].xavier_init_weights()
         elif self.hidden_type == "sigmoid":
             for i in range(1, Nlayers - 1):
                 self.layers.append(Sigmoid(d[i], d[i - 1]))
                 self.layers[i].xavier_init_weights()
         elif self.hidden_type == "linear":
             for i in range(1, Nlayers - 1):
                 self.layers.append(Linear(d[i], d[i - 1]))
                 self.layers[i].xavier_init_weights()
         elif self.hidden_type == "softmax":
             for i in range(1, Nlayers - 1):
                 self.layers.append(Softmax(d[i], d[i - 1]))
                 self.layers[i].xavier_init_weights()
         elif self.hidden_type == "softsign":
             for i in range(1, Nlayers - 1):
                 self.layers.append(SoftSign(d[i], d[i - 1]))
                 self.layers[i].xavier_init_weights()
         elif self.hidden_type == "relu":
             for i in range(1, Nlayers - 1):
                 self.layers.append(ReLU(d[i], d[i - 1]))
                 self.layers[i].xavier_init_weights()
         else:
             print("ERROR: no layer with " + str(self.hidden_type) +
                   " exist!")
             exit(1)
     # add output layer
     if self.out_type == "softmax":
         self.layers.append(Softmax(d[Nlayers - 1], d[Nlayers - 2]))
         self.layers[Nlayers - 1].xavier_init_weights()
     elif self.out_type == "sigmoid":
         self.layers.append(Sigmoid(d[Nlayers - 1], d[Nlayers - 2]))
         self.layers[Nlayers - 1].xavier_init_weights()
     elif self.out_type == "linear":
         self.layers.append(Linear(d[Nlayers - 1], d[Nlayers - 2]))
         self.layers[Nlayers - 1].xavier_init_weights()
     elif self.out_type == "tanh":
         self.layers.append(Tanh(d[Nlayers - 1], d[Nlayers - 2]))
         self.layers[Nlayers - 1].xavier_init_weights()
     elif self.out_type == "softsign":
         self.layers.append(SoftSign(d[Nlayers - 1], d[Nlayers - 2]))
         self.layers[Nlayers - 1].xavier_init_weights()
     elif self.out_type == "relu":
         self.layers.append(ReLU(d[Nlayers - 1], d[Nlayers - 2]))
         self.layers[Nlayers - 1].xavier_init_weights()
     else:
         print("ERROR: no layer with " + str(self.out_type) + " exist!")
         exit(1)
     #save number of layers
     self.Nlayers = Nlayers
     if self.verbose:
         self.print_network_structure()
Esempio n. 7
0
 def add_layer(self, type, dim):
     """
     Method that adds to the network a layer
     of dimension dim and type type
     """
     if type == "input":
         if self.Nlayers == 0:
             self.layers.append(Layer(dim))
             self.Nlayers = len(self.layers)
         else:
             print("ERROR: the network already has an input layer!")
             exit(1)
     elif type == "linear":
         if self.Nlayers == 0:
             print("ERROR: the network needs an input layer first!")
             exit(1)
         else:
             self.layers.append(Linear(dim,
                                       self.layers[self.Nlayers - 1].n))
             self.Nlayers = len(self.layers)
             self.layers[self.Nlayers - 1].xavier_init_weights()
     elif type == "tanh":
         if self.Nlayers == 0:
             print("ERROR: the network needs an input layer first!")
             exit(1)
         else:
             self.layers.append(Tanh(dim, self.layers[self.Nlayers - 1].n))
             self.Nlayers = len(self.layers)
             self.layers[self.Nlayers - 1].xavier_init_weights()
     elif type == "relu":
         if self.Nlayers == 0:
             print("ERROR: the network needs an input layer first!")
             exit(1)
         else:
             self.layers.append(ReLU(dim, self.layers[self.Nlayers - 1].n))
             self.Nlayers = len(self.layers)
             self.layers[self.Nlayers - 1].xavier_init_weights()
     elif type == "softsign":
         if self.Nlayers == 0:
             print("ERROR: the network needs an input layer first!")
             exit(1)
         else:
             self.layers.append(
                 SoftSign(dim, self.layers[self.Nlayers - 1].n))
             self.Nlayers = len(self.layers)
             self.layers[self.Nlayers - 1].xavier_init_weights()
     elif type == "sigmoid":
         if self.Nlayers == 0:
             print("ERROR: the network needs an input layer first!")
             exit(1)
         else:
             self.layers.append(
                 Sigmoid(dim, self.layers[self.Nlayers - 1].n))
             self.Nlayers = len(self.layers)
             self.layers[self.Nlayers - 1].xavier_init_weights()
     elif type == "softmax":
         if self.Nlayers == 0:
             print("ERROR: the network needs an input layer first!")
             exit(1)
         else:
             self.layers.append(
                 Softmax(dim, self.layers[self.Nlayers - 1].n))
             self.Nlayers = len(self.layers)
             self.layers[self.Nlayers - 1].xavier_init_weights()
     else:
         print("ERROR: no such layer available!")
         exit(1)
Esempio n. 8
0

if __name__ == "__main__":

    X = np.array([[-2, 0, 2], [-2, 0, 2]])
    Y = np.array([[0, 1, 0], [0, 1, 0]])
    data = list(zip(X, Y))


    from layer import Sigmoid, Relu, Softmax
    from layer_input import Input
    from layer_output import SigmoidOutput, SoftmaxOutput
    from cost import CrossEntropyCost, LogLikelihoodCost

    l0 = Input(3)  # this should be size of x[0]
    l1 = Sigmoid(3)
    l2 = Relu(3)
    l3 = Softmax(3)
    # l4 = SoftmaxOutput(3, LogLikelihoodCost)
    l4 = SigmoidOutput(3, CrossEntropyCost)
    layers = np.array([l0, l1, l2, l3, l4])

    epoch = 1
    mini_batch_size = 2
    eta = 0
    lam = 0.001

    nn = Network(layers, eta, mini_batch_size, epoch, lam)

    ########## TO BE DELETED LATER
    b = np.array([-5, 1, 2])
Esempio n. 9
0
#loading data scikit-learn
X, y = load_digits(return_X_y=True)
X /= 16
y = to_categorical(y)

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

x_train = x_train.reshape(x_train.shape[0], 8 * 8, 1)
x_test = x_test.reshape(x_test.shape[0], 8 * 8, 1)
y_train = y_train.reshape(y_train.shape[0], 10, 1)
y_test = y_test.reshape(y_test.shape[0], 10, 1)

# neural network build
net = NeuralNetwork([
    Sigmoid(8 * 8, 16),
    Sigmoid(16, 16),
    Sigmoid(16, 10),
])

# train
net.train(x_train, y_train, learning_rate=0.2, epochs=500)

# test
print('Accuracy in test set: ', net.get_accuracy(x_test, y_test))

# saving model
net.save_model('model_sigmoid8.json')

# neural network build
net = NeuralNetwork([