def load_model(checkpoint_path, opt): tic = time.time() model = JointMatching(opt) checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['model'].state_dict()) model.eval() model.cuda() print('model loaded in %.2f seconds' % (time.time() - tic)) return model
def load_matnet_model(self, checkpoint_path, opt): # load MatNet model from pre-trained checkpoint_path tic = time.time() model = JointMatching(opt) checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['model'].state_dict()) model.eval() model.cuda() return model
def main(args): opt = vars(args) tb_logger.configure('tb_logs/'+opt['id'], flush_secs=2) # initialize opt['dataset_splitBy'] = opt['dataset'] + '_' + opt['splitBy'] if opt['dataset'] == 'refcocog': opt['unk_token'] = 3346 elif opt['dataset'] == 'refcoco': opt['unk_token'] = 1996 elif opt['dataset'] == 'refcoco+': opt['unk_token'] = 2629 checkpoint_dir = osp.join(opt['checkpoint_path'], opt['dataset_splitBy']) if not osp.isdir(checkpoint_dir): os.makedirs(checkpoint_dir) # set random seed torch.manual_seed(opt['seed']) random.seed(opt['seed']) # set up loader data_json = osp.join('cache/prepro', opt['dataset_splitBy'], 'data.json') data_h5 = osp.join('cache/prepro', opt['dataset_splitBy'], 'data.h5') loader = GtMRCNLoader(data_h5=data_h5, data_json=data_json) # prepare feats feats_dir = '%s_%s_%s' % (args.net_name, args.imdb_name, args.tag) head_feats_dir=osp.join('cache/feats/', opt['dataset_splitBy'], 'mrcn', feats_dir) loader.prepare_mrcn(head_feats_dir, args) ann_feats = osp.join('cache/feats', opt['dataset_splitBy'], 'mrcn', '%s_%s_%s_ann_feats.h5' % (opt['net_name'], opt['imdb_name'], opt['tag'])) loader.loadFeats({'ann': ann_feats}) # set up model opt['vocab_size']= loader.vocab_size opt['fc7_dim'] = loader.fc7_dim opt['pool5_dim'] = loader.pool5_dim opt['num_atts'] = loader.num_atts model = JointMatching(opt) # resume from previous checkpoint infos = {} if opt['start_from'] is not None: checkpoint = torch.load(os.path.join('output',opt['dataset_splitBy'],opt['start_from']+'.pth')) model.load_state_dict(checkpoint['model'].state_dict()) infos = json.load(open(os.path.join('output',opt['dataset_splitBy'],opt['start_from']+'.json') ,'r')) print('start from model %s, best val score %.2f%%\n' % (opt['start_from'], infos['best_val_score']*100)) if opt['resume']: iter = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_accuracies = infos.get('val_accuracies', []) val_loss_history = infos.get('val_loss_history', {}) val_result_history = infos.get('val_result_history', {}) loss_history = infos.get('loss_history', {}) loader.iterators = infos.get('iterators', loader.iterators) best_val_score = infos.get('best_val_score', None) else: iter = 0 epoch = 0 val_accuracies = [] val_loss_history = {} val_result_history = {} loss_history = {} best_val_score = None # set up criterion if opt['erase_lang_weight'] > 0 or opt['erase_allvisual_weight'] > 0: if opt['erase_allvisual_weight'] > 0: mm_crit = MaxMarginEraseCriterion(opt['visual_rank_weight'], opt['lang_rank_weight'], opt['erase_lang_weight'], opt['erase_allvisual_weight'], opt['margin'], opt['erase_margin']) elif opt['erase_lang_weight'] > 0: mm_crit = MaxMarginEraseCriterion(opt['visual_rank_weight'], opt['lang_rank_weight'], opt['erase_lang_weight'], opt['erase_allvisual_weight'], opt['margin'], opt['erase_margin']) else: mm_crit = MaxMarginCriterion(opt['visual_rank_weight'], opt['lang_rank_weight'], opt['margin']) att_crit = nn.BCEWithLogitsLoss(loader.get_attribute_weights()) # move to GPU if opt['gpuid'] >= 0: model.cuda() mm_crit.cuda() att_crit.cuda() # set up optimizer optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=opt['learning_rate'], betas=(opt['optim_alpha'], opt['optim_beta']), eps=opt['optim_epsilon']) # start training data_time, model_time = 0, 0 lr = opt['learning_rate'] best_predictions, best_overall = None, None if opt['shuffle']: loader.shuffle('train') while True: # run one iteration loss, loss1, loss2, T, wrapped = lossFun(loader, optimizer, model, mm_crit, att_crit, opt, iter) data_time += T['data'] model_time += T['model'] # write the training loss summary if iter % opt['losses_log_every'] == 0: loss_history[iter] = loss # print stats log_toc = time.time() print('iter[%s](epoch[%s]), train_loss=%.3f, lr=%.2E, data:%.2fs/iter, model:%.2fs/iter' \ % (iter, epoch, loss, lr, data_time/opt['losses_log_every'], model_time/opt['losses_log_every'])) # write tensorboard logger tb_logger.log_value('epoch', epoch, step=iter) tb_logger.log_value('iter', iter, step=iter) tb_logger.log_value('training_loss', loss, step=iter) tb_logger.log_value('training_loss1', loss1, step=iter) tb_logger.log_value('training_loss2', loss2, step=iter) tb_logger.log_value('learning_rate', lr, step=iter) data_time, model_time = 0, 0 # decay the learning rates if opt['learning_rate_decay_start'] > 0 and epoch > opt['learning_rate_decay_start']: frac = (epoch - opt['learning_rate_decay_start']) / opt['learning_rate_decay_every'] decay_factor = 0.1 ** frac lr = opt['learning_rate'] * decay_factor # update optimizer's learning rate model_utils.set_lr(optimizer, lr) # update iter and epoch iter += 1 #wrapped = True # for debugging validation phase if wrapped: if opt['shuffle']: loader.shuffle('train') epoch += 1 # eval loss and save checkpoint val_loss, acc, predictions, overall = eval_utils.eval_split(loader, model, None, 'val', opt) val_loss_history[iter] = val_loss val_result_history[iter] = {'loss': val_loss, 'accuracy': acc} val_accuracies += [(iter, acc)] print('val loss: %.2f' % val_loss) print('val acc : %.2f%%\n' % (acc*100.0)) print('val precision : %.2f%%' % (overall['precision']*100.0)) print('val recall : %.2f%%' % (overall['recall']*100.0)) print('val f1 : %.2f%%' % (overall['f1']*100.0)) # write tensorboard logger tb_logger.log_value('val_loss', val_loss, step=iter) tb_logger.log_value('val_acc', acc, step=iter) tb_logger.log_value('val precision', overall['precision']*100.0, step=iter) tb_logger.log_value('val recall', overall['recall']*100.0, step=iter) tb_logger.log_value('val f1', overall['f1']*100.0, step=iter) # save model if best current_score = acc if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_predictions = predictions best_overall = overall checkpoint_path = osp.join(checkpoint_dir, opt['id'] + '.pth') checkpoint = {} checkpoint['model'] = model checkpoint['opt'] = opt torch.save(checkpoint, checkpoint_path) print('model saved to %s' % checkpoint_path) # write json report infos['iter'] = iter infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['loss_history'] = loss_history infos['val_accuracies'] = val_accuracies infos['val_loss_history'] = val_loss_history infos['best_val_score'] = best_val_score infos['best_predictions'] = predictions if best_predictions is None else best_predictions infos['best_overall'] = overall if best_overall is None else best_overall infos['opt'] = opt infos['val_result_history'] = val_result_history infos['word_to_ix'] = loader.word_to_ix infos['att_to_ix'] = loader.att_to_ix with open(osp.join(checkpoint_dir, opt['id']+'.json'), 'wb') as io: json.dump(infos, io) if epoch >= opt['max_epochs'] and opt['max_epochs'] > 0: break
def main(args): opt = vars(args) # initialize opt['dataset_splitBy'] = opt['dataset'] + '_' + opt['splitBy'] checkpoint_dir = osp.join(opt['checkpoint_path'], opt['dataset_splitBy']) if not osp.isdir(checkpoint_dir): os.makedirs(checkpoint_dir) # set random seed torch.manual_seed(opt['seed']) random.seed(opt['seed']) # set up loader data_json = osp.join('cache/prepro', opt['dataset_splitBy'], 'data.json') data_h5 = osp.join('cache/prepro', opt['dataset_splitBy'], 'data.h5') loader = GtMRCNLoader(data_h5=data_h5, data_json=data_json) # prepare feats feats_dir = '%s_%s_%s' % (args.net_name, args.imdb_name, args.tag) head_feats_dir = osp.join('cache/feats/', opt['dataset_splitBy'], 'mrcn', feats_dir) loader.prepare_mrcn(head_feats_dir, args) ann_feats = osp.join( 'cache/feats', opt['dataset_splitBy'], 'mrcn', '%s_%s_%s_ann_feats.h5' % (opt['net_name'], opt['imdb_name'], opt['tag'])) loader.loadFeats({'ann': ann_feats}) # set up model opt['vocab_size'] = loader.vocab_size opt['fc7_dim'] = loader.fc7_dim opt['pool5_dim'] = loader.pool5_dim opt['num_atts'] = loader.num_atts model = JointMatching(opt) # resume from previous checkpoint infos = {} if opt['start_from'] is not None: pass iter = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_accuracies = infos.get('val_accuracies', []) val_loss_history = infos.get('val_loss_history', {}) val_result_history = infos.get('val_result_history', {}) loss_history = infos.get('loss_history', {}) loader.iterators = infos.get('iterators', loader.iterators) if opt['load_best_score'] == 1: best_val_score = infos.get('best_val_score', None) # set up criterion mm_crit = MaxMarginCriterion(opt['visual_rank_weight'], opt['lang_rank_weight'], opt['margin']) att_crit = nn.BCEWithLogitsLoss(loader.get_attribute_weights()) # move to GPU if opt['gpuid'] >= 0: model.cuda() mm_crit.cuda() att_crit.cuda() # set up optimizer optimizer = torch.optim.Adam(model.parameters(), lr=opt['learning_rate'], betas=(opt['optim_alpha'], opt['optim_beta']), eps=opt['optim_epsilon']) # start training data_time, model_time = 0, 0 lr = opt['learning_rate'] best_predictions, best_overall = None, None while True: # run one iteration loss, T, wrapped = lossFun(loader, optimizer, model, mm_crit, att_crit, opt, iter) data_time += T['data'] model_time += T['model'] # write the training loss summary if iter % opt['losses_log_every'] == 0: loss_history[iter] = loss # print stats log_toc = time.time() print('iter[%s](epoch[%s]), train_loss=%.3f, lr=%.2E, data:%.2fs/iter, model:%.2fs/iter' \ % (iter, epoch, loss, lr, data_time/opt['losses_log_every'], model_time/opt['losses_log_every'])) data_time, model_time = 0, 0 # decay the learning rates if opt['learning_rate_decay_start'] > 0 and iter > opt[ 'learning_rate_decay_start']: frac = (iter - opt['learning_rate_decay_start'] ) / opt['learning_rate_decay_every'] decay_factor = 0.1**frac lr = opt['learning_rate'] * decay_factor # update optimizer's learning rate model_utils.set_lr(optimizer, lr) # eval loss and save checkpoint if iter % opt['save_checkpoint_every'] == 0 or iter == opt['max_iters']: val_loss, acc, predictions, overall = eval_utils.eval_split( loader, model, None, 'val', opt) val_loss_history[iter] = val_loss val_result_history[iter] = {'loss': val_loss, 'accuracy': acc} val_accuracies += [(iter, acc)] print('validation loss: %.2f' % val_loss) print('validation acc : %.2f%%\n' % (acc * 100.0)) print('validation precision : %.2f%%' % (overall['precision'] * 100.0)) print('validation recall : %.2f%%' % (overall['recall'] * 100.0)) print('validation f1 : %.2f%%' % (overall['f1'] * 100.0)) # save model if best current_score = acc if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_predictions = predictions best_overall = overall checkpoint_path = osp.join(checkpoint_dir, opt['id'] + '.pth') checkpoint = {} checkpoint['model'] = model checkpoint['opt'] = opt torch.save(checkpoint, checkpoint_path) print('model saved to %s' % checkpoint_path) # write json report infos['iter'] = iter infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['loss_history'] = loss_history infos['val_accuracies'] = val_accuracies infos['val_loss_history'] = val_loss_history infos['best_val_score'] = best_val_score infos[ 'best_predictions'] = predictions if best_predictions is None else best_predictions infos[ 'best_overall'] = overall if best_overall is None else best_overall infos['opt'] = opt infos['val_result_history'] = val_result_history infos['word_to_ix'] = loader.word_to_ix infos['att_to_ix'] = loader.att_to_ix #with open(osp.join(checkpoint_dir, opt['id']+'.json'), 'wb') as io: with open(osp.join(checkpoint_dir, opt['id'] + '.json'), 'w') as io: json.dump(infos, io) # update iter and epoch iter += 1 if wrapped: epoch += 1 if iter >= opt['max_iters'] and opt['max_iters'] > 0: break