Esempio n. 1
0
class Model(nn.Module):
    def __init__(self,
                 quantization_channels=256,
                 gru_channels=896,
                 fc_channels=896,
                 lc_channels=80,
                 upsample_factor=(5, 5, 8),
                 use_gru_in_upsample=True):
        super().__init__()

        self.upsample = ConvInUpsampleNetwork(upsample_scales=upsample_factor,
                                              upsample_activation="none",
                                              upsample_activation_params={},
                                              mode="nearest",
                                              cin_channels=lc_channels,
                                              use_gru=use_gru_in_upsample)
 
        self.wavernn = WaveRNN(quantization_channels, gru_channels,
                               fc_channels, lc_channels)

    def forward(self, inputs, conditions):
        conditions = self.upsample(conditions.transpose(1, 2))
        return self.wavernn(inputs, conditions[:, 1:, :])

    def after_update(self):
        self.wavernn.after_update()

    def generate(self, conditions):
        self.eval()
        with torch.no_grad():
            conditions = self.upsample(conditions.transpose(1, 2))
            output = self.wavernn.generate(conditions)
        self.train()
        return output
Esempio n. 2
0
class Model(nn.Module):
    def __init__(self,
                 quantization_channels=256,
                 gru_channels=896,
                 fc_channels=896,
                 lc_channels=80,
                 lc_out_channles=80,
                 upsample_factor=(5, 5, 8),
                 use_lstm=True,
                 lstm_layer=2,
                 upsample_method='duplicate'):
        super().__init__()
        self.frame_net = FrameRateNet(lc_channels, lc_out_channles)
        self.upsample = UpsampleNet(input_size=lc_out_channles,
                                    output_size=lc_out_channles,
                                    upsample_factor=upsample_factor,
                                    use_lstm=use_lstm,
                                    lstm_layer=lstm_layer,
                                    upsample_method=upsample_method)
        self.wavernn = WaveRNN(quantization_channels, gru_channels,
                               fc_channels, lc_channels)
        self.num_params()

    def forward(self, inputs, conditions):
        conditions = self.frame_net(conditions.transpose(1, 2))
        conditions = self.upsample(conditions.transpose(1, 2))
        return self.wavernn(inputs, conditions[:, 1:, :])

    def after_update(self):
        self.wavernn.after_update()

    def generate(self, conditions):
        self.eval()
        with torch.no_grad():
            conditions = self.frame_net(conditions.transpose(1, 2))
            conditions = self.upsample(conditions.transpose(1, 2))
            output = self.wavernn.generate(conditions)
        self.train()
        return output

    def num_params(self):
        parameters = filter(lambda p: p.requires_grad, self.parameters())
        parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
        print('Trainable Parameters: %.3f million' % parameters)
Esempio n. 3
0
class Model(nn.Module):
    def __init__(self, rnn_dims, fc_dims, pad, upsample_factors, feat_dims):
        super().__init__()
        self.n_classes = 256
        self.upsample = UpsampleNetwork(feat_dims, upsample_factors)
        self.wavernn = WaveRNN(rnn_dims, fc_dims, feat_dims, 0)
        self.num_params()

    def forward(self, x, mels):
        #logger.log(f'x: {x.size()} mels: {mels.size()}')
        cond = self.upsample(mels)
        #logger.log(f'cond: {cond.size()}')
        return self.wavernn(x, cond.transpose(1, 2), None, None, None)

    def after_update(self):
        self.wavernn.after_update()

    def preview_upsampling(self, mels):
        return self.upsample(mels)

    def forward_generate(self,
                         mels,
                         deterministic=False,
                         use_half=False,
                         verbose=False):
        n = mels.size(0)
        if use_half:
            mels = mels.half()
        self.eval()
        with torch.no_grad():
            cond = self.upsample(mels)
            output = self.wavernn.generate(cond.transpose(1, 2),
                                           None,
                                           None,
                                           None,
                                           use_half=use_half,
                                           verbose=verbose)
        self.train()
        return output

    def num_params(self):
        parameters = filter(lambda p: p.requires_grad, self.parameters())
        parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
        logger.log('Trainable Parameters: %.3f million' % parameters)

    def load_state_dict(self, dict):
        return super().load_state_dict(upgrade_state_dict(dict))

    def do_train(self,
                 paths,
                 dataset,
                 optimiser,
                 epochs,
                 batch_size,
                 step,
                 lr=1e-4,
                 valid_index=[],
                 use_half=False):
        if use_half:
            import apex
            optimiser = apex.fp16_utils.FP16_Optimizer(optimiser,
                                                       dynamic_loss_scale=True)
        for p in optimiser.param_groups:
            p['lr'] = lr
        criterion = nn.NLLLoss().cuda()
        k = 0
        saved_k = 0
        print(win_length, hop_length, win_length / hop_length)

        for e in range(epochs):

            # trn_loader = DataLoader(dataset, collate_fn=lambda batch: env.collate(0, int( win_length/hop_length), 0, batch), batch_size=batch_size,
            #                         num_workers=2, shuffle=True, pin_memory=True)
            trn_loader = DataLoader(
                dataset,
                collate_fn=lambda batch: env.collate(0, 16, 0, batch),
                batch_size=batch_size,
                num_workers=2,
                shuffle=True,
                pin_memory=True)

            start = time.time()
            running_loss_c = 0.
            running_loss_f = 0.

            iters = len(trn_loader)

            for i, (mels, coarse, fine, coarse_f,
                    fine_f) in enumerate(trn_loader):
                mels, coarse, fine, coarse_f, fine_f = mels.cuda(
                ), coarse.cuda(), fine.cuda(), coarse_f.cuda(), fine_f.cuda()
                coarse, fine, coarse_f, fine_f = [
                    t[:, hop_length:1 - hop_length]
                    for t in [coarse, fine, coarse_f, fine_f]
                ]
                if use_half:
                    mels = mels.half()
                    coarse_f = coarse_f.half()
                    fine_f = fine_f.half()

                x = torch.cat([
                    coarse_f[:, :-1].unsqueeze(-1),
                    fine_f[:, :-1].unsqueeze(-1), coarse_f[:, 1:].unsqueeze(-1)
                ],
                              dim=2)

                p_c, p_f, _h_n = self(x, mels)
                loss_c = criterion(p_c.transpose(1, 2).float(), coarse[:, 1:])
                loss_f = criterion(p_f.transpose(1, 2).float(), fine[:, 1:])
                loss = loss_c + loss_f

                optimiser.zero_grad()
                if use_half:
                    optimiser.backward(loss)
                else:
                    loss.backward()
                optimiser.step()
                running_loss_c += loss_c.item()
                running_loss_f += loss_f.item()

                self.after_update()

                speed = (i + 1) / (time.time() - start)
                avg_loss_c = running_loss_c / (i + 1)
                avg_loss_f = running_loss_f / (i + 1)

                step += 1
                k = step // 1000
                logger.status(
                    f'Epoch: {e+1}/{epochs} -- Batch: {i+1}/{iters} -- Loss: c={avg_loss_c:#.4} f={avg_loss_f:#.4} -- Speed: {speed:#.4} steps/sec -- Step: {k}k '
                )

            os.makedirs(paths.checkpoint_dir, exist_ok=True)
            torch.save(self.state_dict(), paths.model_path())
            np.save(paths.step_path(), step)
            logger.log_current_status()
            logger.log(
                f' <saved>; w[0][0] = {self.wavernn.gru.weight_ih_l0[0][0]}')
            if k > saved_k + 50:
                torch.save(self.state_dict(), paths.model_hist_path(step))
                saved_k = k
                self.do_generate(paths,
                                 step,
                                 dataset.path,
                                 valid_index,
                                 use_half=use_half)

    def do_generate(self,
                    paths,
                    step,
                    data_path,
                    test_index,
                    deterministic=False,
                    use_half=False,
                    verbose=False):
        k = step // 1000
        test_mels = [np.load(f'{data_path}/mel/{id}.npy') for id in test_index]
        maxlen = max([x.shape[1] for x in test_mels])
        aligned = [
            torch.cat([
                torch.FloatTensor(x),
                torch.zeros(80, maxlen - x.shape[1] + 1)
            ],
                      dim=1) for x in test_mels
        ]
        print(torch.stack(aligned).size())
        out = self.forward_generate(torch.stack(aligned).cuda(),
                                    deterministic,
                                    use_half=use_half,
                                    verbose=verbose)

        os.makedirs(paths.gen_path(), exist_ok=True)
        for i, id in enumerate(test_index):
            gt = np.load(f'{data_path}/quant/{id}.npy')
            gt = (gt.astype(np.float32) + 0.5) / (2**15 - 0.5)
            librosa.output.write_wav(
                f'{paths.gen_path()}/{k}k_steps_{i}_target.wav',
                gt,
                sr=sample_rate)
            audio = out[i][:len(gt)].cpu().numpy()
            librosa.output.write_wav(
                f'{paths.gen_path()}/{k}k_steps_{i}_generated.wav',
                audio,
                sr=sample_rate)