Esempio n. 1
0
    def test_variable_weight_one_input(self):
        #function x**2*a+x*b+c
        xv = np.array([1.3])
        x = Input(['x'], 'x')
        av = np.array([2.1])
        bv = np.array([3.2])
        cv = np.array([5.1])
        a = VWeight(1, weights=av)
        b = VWeight(1, weights=bv)
        c = VWeight(1, weights=cv)
        net = ComputationalGraphLayer(a * x**2 + b * x + c)
        out = net.forward(xv)
        self.assertEqual(out.shape, (1, ))
        assert_almost_equal(out, xv**2 * av + xv * bv + cv)
        dJdy = net.backward(np.array([1.0]))
        self.assertEqual(dJdy.shape, (1, ))
        assert_almost_equal(dJdy, 2 * xv * av + bv)

        net = ComputationalGraphLayer(x * x * a + x * b + c)
        out = net.forward(xv)
        self.assertEqual(out.shape, (1, ))
        assert_almost_equal(out, xv**2 * av + xv * bv + cv)
        dJdy = net.backward(np.array([1.0]))
        self.assertEqual(dJdy.shape, (1, ))
        assert_almost_equal(dJdy, 2 * xv * av + bv)
Esempio n. 2
0
class LSTM(GenericLayer):
    def __init__(self, input_size, output_size):
        self.input_size = input_size
        self.output_size = output_size
        vars = ['xh', 'c']
        xh = Input(vars, 'xh')
        c = Input(vars, 'c')
        Wi = MatrixWeight(input_size + output_size, output_size)
        Wf = MatrixWeight(input_size + output_size, output_size)
        Wc = MatrixWeight(input_size + output_size, output_size)
        bf = Weight(output_size)
        bi = Weight(output_size)
        bc = Weight(output_size)
        self.ct_net = ComputationalGraphLayer(
            Sigmoid(Wf * xh + bf) * c +
            Sigmoid(Wi * xh + bi) * Tanh(Wc * xh + bc))
        Wo = MatrixWeight(input_size + output_size, output_size)
        bo = Weight(output_size)
        self.ht_net = ComputationalGraphLayer(Tanh(c) * (Wo * xh + bo))

        self.ct = np.zeros(output_size)
        self.ht = np.zeros(output_size)

    def forward(self, x, update=False):
        xh = np.hstack([x, self.ht])
        self.ct = self.ct_net.forward([xh, self.ct])
        self.ht = self.ht_net.forward([xh, self.ct])
        return self.ht

    def backward(self, dJdy, optimizer=None):
        dJdx_group = self.ht_net.backward(dJdy, optimizer)

        dJdx = self.ct_net.backward(dJdx_group[0], optimizer)
        return dJdx
Esempio n. 3
0
 def test_one_input(self):
     x = Input(['x'], 'x')
     net = ComputationalGraphLayer(x * x * 3.0 + x * 4.3 + 3.1 - 1 - x *
                                   (x**3 + x * 1.2 + 2) + 1)
     xv = np.array([1.3])
     out = net.forward(xv)
     self.assertEqual(out.shape, (1, ))
     assert_almost_equal(
         out,
         np.array(xv * xv * 3 + xv * 4.3 + 3.1 - 1 - xv *
                  (xv**3 + xv * 1.2 + 2) + 1))
     dJdx = net.backward(np.array([1.0]))
     self.assertEqual(dJdx.shape, (1, ))
     assert_almost_equal(dJdx, -4 * (-0.575 - 0.9 * xv + xv**3))
     xv = np.array([1.1, 2.0, 3.0, 4.0])
     out = net.forward(xv)
     self.assertEqual(out.shape, (4, ))
     assert_almost_equal(
         out,
         np.array(xv * xv * 3 + xv * 4.3 + 3.1 - 1 - xv *
                  (xv**3 + xv * 1.2 + 2) + 1))
     dJdx = net.backward(np.array([1.0, 1.0, 1.0, 1.0]))
     self.assertEqual(dJdx.shape, (4, ))
     assert_almost_equal(dJdx, -4 * (-0.575 - 0.9 * xv + xv**3))
     net = ComputationalGraphLayer(x - x)
     xv = np.array([1.3])
     out = net.forward(xv)
     self.assertEqual(out.shape, (1, ))
     assert_almost_equal(out, np.array(xv - xv))
Esempio n. 4
0
class VanillaNode(GenericLayer):
    def __init__(self,
                 input_size,
                 output_size,
                 memory_size,
                 Wxh='gaussian',
                 Whh='gaussian',
                 Why='gaussian',
                 bh='zeros',
                 by='zeros'):
        self.memory_size = memory_size
        x = Input(['x', 'h'], 'x')
        h = Input(['x', 'h'], 'h')
        s = Input(['s'], 's')
        self.Wxh = MWeight(input_size, memory_size, weights=Wxh)
        self.Whh = MWeight(memory_size, memory_size, weights=Whh)
        self.bh = VWeight(memory_size, weights=bh)
        self.Why = MWeight(memory_size, output_size, weights=Why)
        self.by = VWeight(output_size, weights=by)
        self.statenet = ComputationalGraphLayer(
            Tanh(self.Wxh.dot(x) + self.Whh.dot(h) + self.bh))
        self.outputnet = ComputationalGraphLayer(self.Why.dot(s) + self.by)
        self.state = np.zeros(memory_size)
        self.dJdstate = np.zeros(memory_size)

    def forward(self, x_h, update=False):
        self.state = self.statenet.forward(x_h)
        self.y = self.outputnet.forward(self.state)
        return [self.y, self.state]

    def backward(self, dJdy_dJdh, optimizer=None):
        dJds = self.outputnet.backward(dJdy_dJdh[0], optimizer)
        dJdx_dstate = self.statenet.backward(dJds + dJdy_dJdh[1], optimizer)
        return dJdx_dstate
Esempio n. 5
0
    def test_variable_dict(self):
        xv = np.array([0.5, 0.1, 0.5])
        yv = np.array([0.2, 0.4, 0.5])
        valin = ['x', 'y']
        x = Input(valin, 'x')
        y = Input(valin, 'y')
        xyv = [xv, yv]
        Wxv = np.array([[2.1, 3.1, 2.2], [2.2, 3.2, 4.2], [2.2, 5.2, 4.2]])
        Wyv = np.array([[2.1, 2.1, 2.2], [1.6, 1.2, 6.2], [2.1, 3.1, 2.2]])
        Wx = MWeight(3, 3, weights=Wxv)
        Wy = MWeight(3, 3, weights=Wyv)

        net = ComputationalGraphLayer(Sigmoid(Wx.dot(x)) + Tanh(Wy.dot(y)))
        netDict = Sequential(VariableDictLayer(valin), net)
        out = net.forward(xyv)
        self.assertEqual(out.shape, (3, ))
        assert_almost_equal(out, sigmoid(Wxv.dot(xv)) + np.tanh(Wyv.dot(yv)))
        dJdy = net.backward(np.array([1.0, 1.0, 1.0]))

        self.assertEqual(len(dJdy), 2)
        for ind, key in enumerate(dJdy):
            self.assertEqual(dJdy[ind].shape, xyv[ind].shape)
            assert_almost_equal(dJdy[ind],
                                np.sum(net.numeric_gradient(xyv)[ind], 0))

        auxdict = {'x': 0, 'y': 1}
        out = netDict.forward({'x': xv, 'y': yv})
        self.assertEqual(out.shape, (3, ))
        assert_almost_equal(out, sigmoid(Wxv.dot(xv)) + np.tanh(Wyv.dot(yv)))
        dJdy = netDict.backward(np.array([1.0, 1.0, 1.0]))
        self.assertEqual(len(dJdy), 2)
        for key in dJdy:
            self.assertEqual(dJdy[key].shape, xyv[auxdict[key]].shape)
            assert_almost_equal(
                dJdy[key], np.sum(net.numeric_gradient(xyv)[auxdict[key]], 0))
Esempio n. 6
0
    def test_variable_mw_and_w_multi_input(self):
        #test one layer W*x+b+W*y+b
        list_var = ['x', 'y']
        x = Input(list_var, 'x')
        y = Input(list_var, 'y')
        xv = np.array([1.5, 1.1, 7.5])
        yv = np.array([3.5, 3.1, 2.5, 4.3])
        xyv = [xv, yv]

        Wv1 = np.array([[2.1, 3.1, 2.2], [2.2, 3.2, 4.2]])
        Wv2 = np.array([[6.1, 5.1, 2.2, 4.3], [1.2, 1.2, 5.2, 5.1]])
        W1 = MWeight(3, 2, weights=Wv1)
        W2 = MWeight(4, 2, weights=Wv2)
        bv = np.array([1.3, 5.1])
        b = VWeight(2, weights=bv)
        net = ComputationalGraphLayer(W1.dot(x) + b + W2.dot(y) - b)
        out = net.forward(xyv)
        self.assertEqual(out.shape, (2, ))
        assert_almost_equal(out, Wv1.dot(xv) + bv + Wv2.dot(yv) - bv)
        dJdy = net.backward(np.array([1.0, 1.0]))
        self.assertEqual(len(dJdy), 2)
        gradvett = [np.sum(Wv1, 0), np.sum(Wv2, 0)]
        for ind, element in enumerate(dJdy):
            self.assertEqual(element.shape, xyv[ind].shape)
            assert_almost_equal(dJdy[ind], gradvett[ind])
Esempio n. 7
0
    def test_multi_input(self):
        list_var = [
            'x', 'y'
        ]  #Here the order is important to understand the order of variable in the input group
        x = Input(list_var, 'x')
        y = Input(list_var, 'y')
        xv = np.array([1.3])
        yv = np.array([2.3])
        xyv = [xv, yv]
        net = ComputationalGraphLayer(y * x + x * x * 3.0 + y * y * 4.3 + 3.1 -
                                      1.2 - x * (y**3 + x * 1.2 + 2) + 1)
        out = net.forward(xyv)
        self.assertEqual(out.shape, (1, ))
        assert_almost_equal(
            out, yv * xv + xv * xv * 3.0 + yv * yv * 4.3 + 3.1 - 1.2 - xv *
            (yv**3 + xv * 1.2 + 2) + 1)
        dJdy = net.backward(np.array([1.0]))
        self.assertEqual(len(dJdy), 2)
        for element in dJdy:
            self.assertEqual(element.shape, (1, ))
        assert_almost_equal(
            dJdy, [-2 + 3.6 * xv + yv - yv**3, xv + 8.6 * yv - 3 * xv * yv**2])

        xv = np.array([1.3, 1.1, 2.3, 1.2])
        yv = np.array([2.3, 1.2, 3.1, 2.2])
        xyv = [xv, yv]
        net = ComputationalGraphLayer(y * x + x * x * 3.0 + y * y * 4.3 + 3.1 -
                                      1 - x * (y**3 + x * 1.2 + 2) + 1)
        out = net.forward(xyv)
        self.assertEqual(out.shape, (4, ))
        assert_almost_equal(
            out, yv * xv + xv * xv * 3.0 + yv * yv * 4.3 + 3.1 - 1 - xv *
            (yv**3 + xv * 1.2 + 2) + 1)
        dJdy = net.backward(np.array([1.0]))
        self.assertEqual(len(dJdy), 2)
        for element in dJdy:
            self.assertEqual(element.shape, (4, ))
        assert_almost_equal(
            dJdy, [-2 + 3.6 * xv + yv - yv**3, xv + 8.6 * yv - 3 * xv * yv**2])
Esempio n. 8
0
 def test_variable_mw_and_w_one_input(self):
     #test one layer W*x+b
     xv = np.array([1.5, 1.1, 7.5])
     x = Input(['x'], 'x')
     Wv = np.array([[2.1, 3.1, 2.2], [2.2, 3.2, 4.2]])
     W = MWeight(3, 2, weights=Wv)
     bv = np.array([1.3, 5.1])
     b = VWeight(2, weights=bv)
     net = ComputationalGraphLayer(W.dot(x) + b)
     out = net.forward(xv)
     self.assertEqual(out.shape, (2, ))
     assert_almost_equal(out, Wv.dot(xv) + bv)
     dJdy = net.backward(np.array([1.0, 1.0]))
     self.assertEqual(dJdy.shape, (3, ))
     assert_almost_equal(dJdy, np.sum(Wv, 0))
Esempio n. 9
0
    def test_variable_matrixweight_one_input(self):
        # function W*x vettoriale
        xv = np.array([1.3, 1.1, 7.5])
        x = Input(['x'], 'x')
        Wv = np.array([[2.1, 3.1, 2.2], [2.2, 3.2, 4.2]])
        W = MWeight(3, 2, weights=Wv)
        net = ComputationalGraphLayer(W.dot(x))
        out = net.forward(xv)
        self.assertEqual(out.shape, (2, ))
        assert_almost_equal(out, Wv.dot(xv))
        dJdy = net.backward(np.array([1.0, 1.0]))
        self.assertEqual(dJdy.shape, (3, ))
        assert_almost_equal(dJdy, np.sum(Wv, 0))

        Wv1 = np.array([[2.1, 3.1, 2.2], [2.2, 3.2, 4.2]])
        Wv2 = np.array([[2.1, 3.1], [7.4, 2.2], [3.2, 2.2], [1.1, 1.2]])
        Wv3 = np.array([[2.1, 3.1, 7.4, 2.2], [3.2, 2.2, 1.1, 1.2],
                        [2.2, 3.2, 4.2, 7.4]])
        W1 = MWeight(3, 2, weights=Wv1)
        W2 = MWeight(2, 4, weights=Wv2)
        W3 = MWeight(4, 3, weights=Wv3)
        net = ComputationalGraphLayer(W3.dot(W2).dot(W1).dot(x))
        out = net.forward(xv)
        self.assertEqual(out.shape, (3, ))
        assert_almost_equal(out, Wv3.dot(Wv2).dot(Wv1).dot(xv))
        dJdy = net.backward(np.array([1.0, 1.0, 1.0]))
        self.assertEqual(dJdy.shape, (3, ))
        assert_almost_equal(dJdy, np.sum(Wv3.dot(Wv2).dot(Wv1), 0))

        net = ComputationalGraphLayer(W3.dot(W2.dot(W1.dot(x))))
        out = net.forward(xv)
        self.assertEqual(out.shape, (3, ))
        assert_almost_equal(out, Wv3.dot(Wv2.dot(Wv1.dot(xv))))
        dJdy = net.backward(np.array([1.0, 1.0, 1.0]))
        self.assertEqual(dJdy.shape, (3, ))
        assert_almost_equal(dJdy, np.sum(Wv3.dot(Wv2).dot(Wv1), 0))
Esempio n. 10
0
    def test_concat(self):
        xv = np.array([0.5, 0.1, 0.5])
        yv = np.array([0.2, 0.4, 0.5, 7.0])
        valin = ['x', 'y']
        x = Input(valin, 'x')
        y = Input(valin, 'y')
        xyv = [xv, yv]
        Wxv = np.array([[2.1, 3.1, 2.2], [2.2, 3.2, 4.2], [2.2, 5.2, 4.2]])
        Wx = MWeight(3, 3, weights=Wxv)

        net = ComputationalGraphLayer(Concat([Wx.dot(x), y]))
        out = net.forward(xyv)
        self.assertEqual(out.shape, (7, ))
        dJdy = net.backward(np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]))
        self.assertEqual(len(dJdy), 2)
        gradvett = [np.sum(Wxv, 0), np.array([1.0, 1.0, 1.0, 1.0])]
        for ind, element in enumerate(dJdy):
            self.assertEqual(element.shape, xyv[ind].shape)
            assert_almost_equal(dJdy[ind], gradvett[ind])
Esempio n. 11
0
    def test_variable_sharedweights(self):
        #test one layer W*x+b+W*y+b
        list_var = ['x', 'y']
        x = Input(list_var, 'x')
        y = Input(list_var, 'y')
        xv = np.array([1.5, 1.1, 7.5])
        yv = np.array([0.2, 0.4, 0.5])
        xyv = [xv, yv]

        Wv = np.array([[2.1, 3.1, 2.2], [2.2, 3.2, 4.2], [2.2, 5.2, 4.2]])
        W = MWeight(3, 3, weights=Wv)

        net = ComputationalGraphLayer(W.dot(W.dot(x) + W.dot(y)))
        out = net.forward(xyv)
        self.assertEqual(out.shape, (3, ))
        assert_almost_equal(out, Wv.dot(Wv.dot(xv) + Wv.dot(yv)))
        dJdy = net.backward(np.array([1.0, 1.0, 1.0]))
        self.assertEqual(len(dJdy), 2)
        gradvett = [np.sum(Wv.dot(Wv), 0), np.sum(Wv.dot(Wv), 0)]
        for ind, element in enumerate(dJdy):
            self.assertEqual(element.shape, xyv[ind].shape)
            assert_almost_equal(dJdy[ind], gradvett[ind])
Esempio n. 12
0
    def test_neuron_one_input(self):
        xv = np.array([0.5, 0.1, 0.5])
        x = Input(['x'], 'x')
        Wv = np.array([[0.1, 0.1, 0.2], [0.5, 0.2, 0.2]])
        W = MWeight(3, 2, weights=Wv)
        bv = np.array([0.3, 0.1])
        b = VWeight(2, weights=bv)
        net = ComputationalGraphLayer(Sigmoid(W.dot(x) + b))
        out = net.forward(xv)
        self.assertEqual(out.shape, (2, ))
        check_out = 1.0 / (1.0 + np.exp(-Wv.dot(xv) - bv))
        assert_almost_equal(out, check_out)
        dJdy = net.backward(np.array([1.0, 1.0]))
        self.assertEqual(dJdy.shape, (3, ))
        assert_almost_equal(dJdy, np.sum(net.numeric_gradient(xv), 0))
        assert_almost_equal(dJdy, (check_out * (1 - check_out)).dot(Wv))

        net2 = Sequential(
            LinearLayer(3, 2, weights=np.hstack([Wv, bv.reshape(2, 1)])),
            SigmoidLayer)
        out2 = net2.forward(xv)
        assert_almost_equal(out, out2)
        dJdy2 = net.backward(np.array([1.0, 1.0]))
        assert_almost_equal(dJdy, dJdy2)
Esempio n. 13
0
    train=train,
    test=test,
    loss=SquaredLoss(),
    optimizer=GradientDescentMomentum(learning_rate=0.9, momentum=0.5),
    # batch_size = len(train),
    # optimizer = AdaGrad(learning_rate=0.6),
    epochs=epochs)

#
plt.figure(4)
plt.title('Errors History (J)')
plt.plot(np.array([x for (x, t) in test]),
         np.array([t for (x, t) in test]),
         color='red')
plt.plot(np.array([x for (x, t) in test]),
         np.array([n.forward(x) for (x, t) in test]),
         color='green')
# plt.ylim([0, 2])
plt.xlabel('x')
plt.ylabel('y')

plt.ion()
plt.show()

# n2 = LinearLayer(3,1)
#
# train2 = []
# for i,x in enumerate(np.linspace(-2,2,5)):
#     train2.append((np.array([x**2,x,1]),np.array([3.2*x**2+5.2*x+7.1])))
#
# t = Trainer(show_training=True)