Esempio n. 1
0
 def _init_params(self, X=None):
     self._dv = {}
     self.conv1 = Conv2D(
         pad=self.pad1,
         init=self.init,
         act_fn=self.act_fn,
         out_ch=self.out_ch1,
         stride=self.stride1,
         optimizer=self.optimizer,
         kernel_shape=self.kernel_shape1,
     )
     self.conv2 = Conv2D(
         pad=self.pad2,
         init=self.init,
         out_ch=self.out_ch2,
         stride=self.stride2,
         optimizer=self.optimizer,
         kernel_shape=self.kernel_shape2,
         act_fn=Affine(slope=1, intercept=0),
     )
     # we can't initialize `conv_skip` without X's dimensions; see `forward`
     # for further details
     self.batchnorm1 = BatchNorm2D(epsilon=self.epsilon,
                                   momentum=self.momentum)
     self.batchnorm2 = BatchNorm2D(epsilon=self.epsilon,
                                   momentum=self.momentum)
     self.batchnorm_skip = BatchNorm2D(epsilon=self.epsilon,
                                       momentum=self.momentum)
     self.add3 = Add(self.act_fn)
Esempio n. 2
0
def basicConv2Layer():
    model = Network()
    model.add(Conv2D('conv1', 1, 4, 3, 1, 1))
    model.add(Relu('relu1'))
    model.add(AvgPool2D('pool1', 2, 0))  # output shape: N x 4 x 14 x 14
    model.add(Conv2D('conv2', 4, 4, 3, 1, 1))
    model.add(Relu('relu2'))
    model.add(AvgPool2D('pool2', 2, 0))  # output shape: N x 4 x 7 x 7
    model.add(Reshape('flatten', (-1, 196)))
    model.add(Linear('fc3', 196, 10, 0.1))

    loss = SoftmaxCrossEntropyLoss(name='loss')
    return model, loss
Esempio n. 3
0
    def _build_encoder(self):
        """
        CNN encoder

        Conv1 -> ReLU -> MaxPool1 -> Conv2 -> ReLU -> MaxPool2 ->
            Flatten -> FC1 -> ReLU -> FC2
        """
        self.encoder = OrderedDict()
        self.encoder["Conv1"] = Conv2D(
            act_fn=ReLU(),
            init=self.init,
            pad=self.enc_conv1_pad,
            optimizer=self.optimizer,
            out_ch=self.enc_conv1_out_ch,
            stride=self.enc_conv1_stride,
            kernel_shape=self.enc_conv1_kernel_shape,
        )
        self.encoder["Pool1"] = Pool2D(
            mode="max",
            optimizer=self.optimizer,
            stride=self.enc_pool1_stride,
            kernel_shape=self.enc_pool1_kernel_shape,
        )
        self.encoder["Conv2"] = Conv2D(
            act_fn=ReLU(),
            init=self.init,
            pad=self.enc_conv2_pad,
            optimizer=self.optimizer,
            out_ch=self.enc_conv2_out_ch,
            stride=self.enc_conv2_stride,
            kernel_shape=self.enc_conv2_kernel_shape,
        )
        self.encoder["Pool2"] = Pool2D(
            mode="max",
            optimizer=self.optimizer,
            stride=self.enc_pool2_stride,
            kernel_shape=self.enc_pool2_kernel_shape,
        )
        self.encoder["Flatten3"] = Flatten(optimizer=self.optimizer)
        self.encoder["FC4"] = FullyConnected(
            n_out=self.latent_dim, act_fn=ReLU(), optimizer=self.optimizer
        )
        self.encoder["FC5"] = FullyConnected(
            n_out=self.T * 2,
            optimizer=self.optimizer,
            act_fn=Affine(slope=1, intercept=0),
            init=self.init,
        )
Esempio n. 4
0
def TEST_conv():

    import ipdb
    ipdb.set_trace()
    x = T.tensor4("x")
    x.tag.test_value = np.random.randn(1, 3, 32, 32)

    conv2d = Conv2D(x, 1, 3, 3, (1, 1), 1, "conv1")
Esempio n. 5
0
def LeNet():
    model = Network()
    model.add(Conv2D('conv1', 1, 6, 5, 2, 1))
    model.add(Relu('relu1'))
    model.add(AvgPool2D('pool1', 2, 0))  # output shape: N x 6 x 14 x 14
    model.add(Conv2D('conv2', 6, 16, 5, 0, 1))
    model.add(Relu('relu2'))
    model.add(AvgPool2D('pool2', 2, 0))  # output shape: N x 16 x 5 x 5
    model.add(Reshape('flatten', (-1, 400)))
    model.add(Linear('fc1', 400, 120, 0.1))
    model.add(Relu('relu3'))
    model.add(Linear('fc2', 120, 84, 0.1))
    model.add(Relu('relu4'))
    model.add(Linear('fc3', 84, 10, 0.1))

    loss = SoftmaxCrossEntropyLoss(name='loss')
    return model, loss
Esempio n. 6
0
    def build_policy_and_value_network(self):
        data_format = 'NHWC'
        #init = tf.truncated_normal_initializer(0, 0.02)

        self.state = tf.placeholder(
            'float', [None, self.width, self.height, self.hist_len], 'state')
        print self.state.get_shape()
        l = Conv2D('conv0',
                   self.state,
                   out_channel=32,
                   kernel_shape=8,
                   stride=4)
        l = Conv2D('conv1', l, out_channel=64, kernel_shape=4, stride=2)
        l = Conv2D('conv2', l, out_channel=64, kernel_shape=3, stride=1)
        l = Linear('l1', l, out_dim=512, nl=tf.nn.relu)
        self.logits = tf.nn.softmax(
            Linear('fc-pi', l, out_dim=self.num_actions, nl=tf.identity))
        self.value = Linear('fc-v', l, 1, nl=tf.identity)
Esempio n. 7
0
 def _init_conv2(self):
     self.conv2 = Conv2D(
         pad="same",
         init=self.init,
         out_ch=self.in_ch,
         stride=self.stride2,
         optimizer=self.optimizer,
         kernel_shape=self.kernel_shape2,
         act_fn=Affine(slope=1, intercept=0),
     )
Esempio n. 8
0
 def _init_conv_skip(self, X):
     self._calc_skip_padding(X)
     self.conv_skip = Conv2D(
         init=self.init,
         pad=self.pad_skip,
         out_ch=self.out_ch2,
         stride=self.stride_skip,
         kernel_shape=self.kernel_shape_skip,
         act_fn=Affine(slope=1, intercept=0),
         optimizer=self.optimizer,
     )
def vgg_bn():
    return [
        Conv2D([3, 3], 32, [1, 1, 1, 1], padding='SAME'),
        Conv2DBatchNorm(32),
        Activation(tf.nn.relu),
        Conv2D([3, 3], 32, [1, 1, 1, 1], padding='SAME'),
        Conv2DBatchNorm(32),
        Activation(tf.nn.relu),
        Conv2D([3, 3], 64, [1, 2, 2, 1]),
        Conv2DBatchNorm(64),
        Activation(tf.nn.relu),
        Conv2D([3, 3], 64, [1, 1, 1, 1], padding='SAME'),
        Conv2DBatchNorm(64),
        Activation(tf.nn.relu),
        Conv2D([3, 3], 128, [1, 2, 2, 1]),
        Conv2DBatchNorm(128),
        Activation(tf.nn.relu),
        Conv2D([3, 3], 128, [1, 1, 1, 1], padding='SAME'),
        Conv2DBatchNorm(128),
        Activation(tf.nn.relu),
        Flatten(),
        Dense(128),
        Activation(tf.sigmoid),
        Dropout(0.5),
        Dense(10),
        Activation(tf.nn.softmax),
    ]
Esempio n. 10
0
def mnist_feature_learner(name, images, DIM, dropout=None, is_training=None):
    initializer = 'glorot_uniform'
    normalizer = 'BN'

    output = Conv2D('{}.feature.Conv.1'.format(name), images, DIM, initializer=initializer)
    output = tf.nn.max_pool(output, (1,1,2,2), (1,1,2,2), 'VALID', data_format='NCHW')

    output = Normalize('{}.feature.NORM.1'.format(name), output, method=normalizer, bn_is_training=is_training)
    output = tf.nn.relu(output)

    output = Conv2D('{}.feature.Conv.2'.format(name), output, 2*DIM, initializer=initializer)
    output = tf.nn.max_pool(output, (1,1,2,2), (1,1,2,2), 'VALID', data_format='NCHW')

    output = Normalize('{}.feature.NORM.2'.format(name), output, method=normalizer, bn_is_training=is_training)
    output = tf.nn.relu(output)

    output = Conv2D('{}.feature.Conv.3'.format(name), output, 4*DIM, initializer=initializer)
    output = tf.nn.max_pool(output, (1,1,2,2), (1,1,2,2), 'VALID', data_format='NCHW')

    output = Normalize('{}.feature.NORM.3'.format(name), output, method=normalizer, bn_is_training=is_training)
    output = tf.nn.relu(output)

    output = tf.reduce_mean(output, [2,3])
    return output
Esempio n. 11
0
 def add(self, layer_type, **kwargs):
     layer = None
     
     # send the layer the output shape of the last layer, or the input shape if it's the first
     kwargs['input_shape'] = self._layers[-1].output_shape if len(self._layers) else self._input_shape
     
     if layer_type == 'conv':
         layer = Conv2D(**kwargs)
     elif layer_type == 'dense':
         layer = Dense(**kwargs)
     elif layer_type == 'pool':
         layer = MaxPooling2D(**kwargs)
     elif layer_type == 'flat':
         layer = Flatten(**kwargs)
     
     self._layers.append(layer)
def vgg_bn():
    return [
	#1
        Conv2D([7, 7], 64, [1, 3, 3, 1]),
	Conv2DBatchNorm(64),
	Activation(tf.nn.relu),
	MaxPool([1,4,4,1],[1,1,1,1]),
	
	#2
	Convolutional_block(f = 3, filters = [64,64,256],s = 1),
	MaxPool([1,5,5,1],[1,1,1,1]),
	Dropout(0.5),
	Identity_block(f = 3, filters=[64,64,256]),
	Dropout(0.5),

	Identity_block(f = 3, filters=[64,64,256]),
	Dropout(0.5),
	MaxPool([1,2,2,1],[1,1,1,1]),
	#3
	Convolutional_block(f = 3, filters = [128,128,512],s = 2),
	Dropout(0.5),
	Identity_block(f = 3, filters=[128,128,512]),
	Dropout(0.5),
	Identity_block(f = 3, filters=[128,128,512]),
	Dropout(0.5),
	MaxPool([1,2,2,1],[1,1,1,1]),

	#4
	Convolutional_block(f = 3, filters = [256,256,1024],s = 2),
	Identity_block(f = 3, filters=[256,256,1024]),
	Identity_block(f = 3, filters=[256,256,1024]),
	Identity_block(f = 3, filters=[256,256,1024]),
	Identity_block(f = 3, filters=[256,256,1024]),
	Identity_block(f = 3, filters=[256,256,1024]),
        Flatten(),
        Dense(128),
        Activation(tf.sigmoid),

        Dropout(0.5),

        Dense(10),
	#Fully_connected(),
        Activation(tf.nn.softmax),
    ]
Esempio n. 13
0
    def _init_params(self):
        self._dv = {}

        self.conv1 = Conv2D(
            pad="same",
            init=self.init,
            out_ch=self.out_ch,
            act_fn=self.act_fn,
            stride=self.stride1,
            optimizer=self.optimizer,
            kernel_shape=self.kernel_shape1,
        )
        # we can't initialize `conv2` without X's dimensions; see `forward`
        # for further details
        self.batchnorm1 = BatchNorm2D(epsilon=self.epsilon,
                                      momentum=self.momentum)
        self.batchnorm2 = BatchNorm2D(epsilon=self.epsilon,
                                      momentum=self.momentum)
        self.add3 = Add(self.act_fn)
Esempio n. 14
0
def convert(keras_model, class_map, description="Neural Network Model"):
	"""
	Convert a keras model to PMML
	@model. The keras model object
	@class_map. A map in the form {class_id: class_name}
	@description. A short description of the model
	Returns a DeepNeuralNetwork object which can be exported to PMML
	"""
	pmml = DeepNetwork(description=description, class_map=class_map)
	pmml.keras_model = keras_model
	pmml.model_name = keras_model.name
	config = keras_model.get_config()

	for layer in config['layers']:
		layer_class = layer['class_name']
		layer_config = layer['config']
		layer_inbound_nodes = layer['inbound_nodes']
		# Input
		if layer_class is "InputLayer":
			pmml._append_layer(InputLayer(
				name=layer_config['name'],
				input_size=layer_config['batch_input_shape'][1:]
			))
		# Conv2D
		elif layer_class is "Conv2D":
			pmml._append_layer(Conv2D(
				name=layer_config['name'],
				channels=layer_config['filters'],
				kernel_size=layer_config['kernel_size'],
				dilation_rate=layer_config['dilation_rate'],
				use_bias=layer_config['use_bias'],
				activation=layer_config['activation'],
				strides=layer_config['strides'],
				padding=layer_config['padding'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		# DepthwiseConv2D
		elif layer_class is "DepthwiseConv2D":
			pmml._append_layer(DepthwiseConv2D(
				name=layer_config['name'],
				kernel_size=layer_config['kernel_size'],
				depth_multiplier=layer_config['depth_multiplier'],
				use_bias=layer_config['use_bias'],
				activation=layer_config['activation'],
				strides=layer_config['strides'],
				padding=layer_config['padding'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		# MaxPooling
		elif layer_class is "MaxPooling2D":
			pmml._append_layer(MaxPooling2D(
				name=layer_config['name'],
				pool_size=layer_config['pool_size'],
				strides=layer_config['strides'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		elif layer_class is "AveragePooling2D":
			pmml._append_layer(AveragePooling2D(
				name=layer_config['name'],
				pool_size=layer_config['pool_size'],
				strides=layer_config['strides'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		elif layer_class is "GlobalAveragePooling2D":
			pmml._append_layer(GlobalAveragePooling2D(
				name=layer_config['name'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		# Flatten
		elif layer_class is "Flatten":
			pmml._append_layer(Flatten(
				name=layer_config['name'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		# Dense
		elif layer_class is "Dense":
			pmml._append_layer(Dense(
				name=layer_config['name'],
				channels=layer_config['units'],
				use_bias=layer_config['use_bias'],
				activation=layer_config['activation'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		# Zero padding layer
		elif layer_class is "ZeroPadding2D":
			pmml._append_layer(ZeroPadding2D(
				name=layer_config['name'],
				padding=layer_config['padding'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		# Reshape layer
		elif layer_class is "Reshape":
			pmml._append_layer(Reshape(
				name=layer_config['name'],
				target_shape=layer_config['target_shape'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		elif layer_class is "Dropout":
			pmml._append_layer(Dropout(
				name=layer_config['name'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		# Batch Normalization
		elif layer_class is "BatchNormalization":
			pmml._append_layer(BatchNormalization(
				name=layer_config['name'],
				axis=layer_config['axis'],
				momentum=layer_config['momentum'],
				epsilon=layer_config['epsilon'],
				center=layer_config['center'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		elif layer_class is "Add":
			pmml._append_layer(Merge(
				name=layer_config['name'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes)
			))
		elif layer_class is "Subtract":
			pmml._append_layer(Merge(
				name=layer_config['name'],
				operator='subtract',
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes)
			))
		elif layer_class is "Dot":
			pmml._append_layer(Merge(
				name=layer_config['name'],
				operator='dot',
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes)
			))
		elif layer_class is "Concatenate":
			pmml._append_layer(Merge(
				name=layer_config['name'],
				axis=layer_config['axis'],
				operator='concatenate',
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes)
			))
		elif layer_class is "Activation":
			pmml._append_layer(Activation(
				name=layer_config['name'],
				activation=layer_config['activation'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		elif layer_class is "ReLU":
			pmml._append_layer(Activation(
				name=layer_config['name'],
				activation='relu',
				threshold = layer_config['threshold'],
				max_value = layer_config['max_value'],
				negative_slope = layer_config['negative_slope'],
				inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
			))
		# Unknown layer
		else:
			raise ValueError("Unknown layer type:",layer_class)
	return pmml
Esempio n. 15
0
from network import Network
from layers import Relu, Linear, Conv2D, AvgPool2D, Reshape
from utils import LOG_INFO
from loss import EuclideanLoss, SoftmaxCrossEntropyLoss
from solve_net import train_net, test_net, get_feature_map
from load_data import load_mnist_4d
import matplotlib.pyplot as plt

train_data, test_data, train_label, test_label = load_mnist_4d('data')

# Your model defintion here
# You should explore different model architecture
model = Network()
model.add(Conv2D('conv1', 1, 8, 3, 1, 0.01))
model.add(Relu('relu1'))
model.add(AvgPool2D('pool1', 2, 0))  # output shape: N x 4 x 14 x 14
model.add(Conv2D('conv2', 8, 16, 3, 1, 0.01))
model.add(Relu('relu2'))
model.add(AvgPool2D('pool2', 2, 0))  # output shape: N x 4 x 7 x 7
model.add(Reshape('flatten', (-1, 784)))
model.add(Linear('fc3', 784, 256, 0.01))
model.add(Relu('relu3'))
model.add(Linear('fc4', 256, 10, 0.01))

loss = SoftmaxCrossEntropyLoss(name='loss')

# Training configuration
# You should adjust these hyperparameters
# NOTE: one iteration means model forward-backwards one batch of samples.
#       one epoch means model has gone through all the training samples.
#       'disp_freq' denotes number of iterations in one epoch to display information.
    plt.imshow(data)
    plt.axis('off')


train_data, test_data, train_label, test_label = load_mnist_4d('data')

if len(sys.argv) >= 2:
    filename = sys.argv[1]
else:
    filename = "test"

# Your model defintion here
# You should explore different model architecture
model = Network()
model.add(Conv2D('conv1', 1, 4, 3, 1, 1))
model.add(Relu('relu1'))
model.add(AvgPool2D('pool1', 2, 0))  # output shape: N x 4 x 14 x 14
model.add(Conv2D('conv2', 4, 4, 3, 1, 1))
model.add(Relu('relu2'))
model.add(AvgPool2D('pool2', 2, 0))  # output shape: N x 4 x 7 x 7
model.add(Reshape('flatten', (-1, 196)))
model.add(Linear('fc3', 196, 10, 0.1))

loss = SoftmaxCrossEntropyLoss(name='loss')

# Training configuration
# You should adjust these hyperparameters
# NOTE: one iteration means model forward-backwards one batch of samples.
#       one epoch means model has gone through all the training samples.
#       'disp_freq' denotes number of iterations in one epoch to display information.
Esempio n. 17
0
from losses import mse, cross_entry
from compute import accuracy, to_categorical, shuffle
from optimizers import SGD, Adam, RMSprpo

x, y = load_mnist('mnist')
x = x / 255.
y = to_categorical(y, 10)
x, y = shuffle(x, y)
x = x[:100]
y = y[:100]
x = np.reshape(x, (-1, 1, 28, 28))

model = Model()
n = 32
act = activation.ReLU
model.addlayer(Conv2D(3, x.shape[1], n, 1, activate=act))
model.addlayer(Pool2D(2))
model.addlayer(Conv2D(3, n, n, 1, activate=act))
model.addlayer(Pool2D(2))
model.addlayer(Conv2D(3, n, n, 2, activate=act))
model.addlayer(Conv2D(3, n, 1, activate=act))
model.addlayer(Flatten())
model.addlayer(Dense(4**2, y.shape[1], activate=activation.Softmax))

# model.addlayer(Dense(x.shape[1], n,activate=act))
# model.addlayer(Dense(n, n,activate=act))
# model.addlayer(Dense(n, n,activate=act))
# model.addlayer(Dense(n, y.shape[1], activate=activation.Softmax))

model.compile(opt=SGD, lr=1e-2, loss=cross_entry)
model.fit(x, y, epoch=50, btsize=10, verbose=2)
Esempio n. 18
0
    # plt.imshow(data)
    # plt.axis('off')


train_data, test_data, train_label, test_label = load_mnist_4d('data')

# Your model defintion here
# You should explore different model architecture
# Batch = N x 28 x 28

# Origin CNN
model = Network()
model.add(
    Conv2D('conv1',
           in_channel=1,
           out_channel=4,
           kernel_size=3,
           pad=1,
           init_std=0.01))
model.add(Relu('relu1'))
model.add(AvgPool2D('pool1', kernel_size=2,
                    pad=0))  # output shape: N x 4 x 14 x 14
model.add(
    Conv2D('conv2',
           in_channel=4,
           out_channel=4,
           kernel_size=3,
           pad=1,
           init_std=0.01))
model.add(Relu('relu2'))
model.add(AvgPool2D('pool2', kernel_size=2,
                    pad=0))  # output shape: N x 4 x 7 x 7
def main():

    train_x, train_y, valid_x, valid_y, test_x, test_y = get_cifar10(
        './cifar-10-batches-py/')
    labels = unpickle('./cifar-10-batches-py/batches.meta')['label_names']

    train_x = train_x.astype(np.float32) / 255.0
    valid_x = valid_x.astype(np.float32) / 255.0
    test_x = test_x.astype(np.float32) / 255.0

    num_epochs = args.epochs
    eta = args.lr
    batch_size = args.batch_size

    # input
    x = T.tensor4("x")
    y = T.ivector("y")
    drop_switch = T.scalar("drop_switch")

    # test values
    # x.tag.test_value = np.random.randn(6, 3, 32, 32).astype(np.float32)
    # y.tag.test_value = np.array([1,2,1,4,5]).astype(np.int32)
    # x.tag.test_value = x.tag.test_value / x.tag.test_value.max()

    # drop_switch.tag.test_value = 1.0
    # import ipdb; ipdb.set_trace()

    # network definition
    conv1 = Conv2D(input=x,
                   num_filters=50,
                   input_channels=3,
                   size=3,
                   strides=(1, 1),
                   padding=1,
                   name="conv1")
    act1 = Activation(input=conv1.output, activation="relu", name="act1")
    pool1 = Pool2D(input=act1.output, stride=(2, 2), name="pool1")

    conv2 = Conv2D(input=pool1.output,
                   num_filters=100,
                   input_channels=50,
                   size=3,
                   strides=(1, 1),
                   padding=1,
                   name="conv2")
    act2 = Activation(input=conv2.output, activation="relu", name="act2")
    pool2 = Pool2D(input=act2.output, stride=(2, 2), name="pool2")

    conv3 = Conv2D(input=pool2.output,
                   num_filters=200,
                   input_channels=100,
                   size=3,
                   strides=(1, 1),
                   padding=1,
                   name="conv3")
    act3 = Activation(input=conv3.output, activation="relu", name="act3")
    pool3 = Pool2D(input=act3.output, stride=(2, 2), name="pool3")

    flat = Flatten(input=pool3.output)
    drop4 = Dropout(input=flat.output, p=0.5, drop_switch=drop_switch)
    fc1 = Dense(input=drop4.output, n_in=200 * 4 * 4, n_out=500, name="fc1")
    act4 = Activation(input=fc1.output, activation="relu", name="act4")
    drop5 = Dropout(input=act4.output, p=0.5, drop_switch=drop_switch)
    fc2 = Dense(input=drop5.output, n_in=500, n_out=10, name="fc2")
    softmax = Activation(input=fc2.output,
                         activation="softmax",
                         name="softmax")

    # loss
    xent = T.nnet.nnet.categorical_crossentropy(softmax.output, y)
    cost = xent.mean()

    # errors
    y_pred = T.argmax(softmax.output, axis=1)
    errors = T.mean(T.neq(y, y_pred))

    # updates
    params = conv1.params + conv2.params + conv3.params + fc1.params + fc2.params
    grads = [T.grad(cost, param) for param in params]
    updates = []
    for p, g in zip(params, grads):
        updates.append((p, p - eta * g)  #sgd
                       )

    # compiling train, predict and test fxns
    train = theano.function(inputs=[x, y, drop_switch],
                            outputs=cost,
                            updates=updates)
    predict = theano.function(inputs=[x, drop_switch], outputs=y_pred)
    test = theano.function(inputs=[x, y, drop_switch], outputs=errors)

    # train
    checkpoint = ModelCheckpoint(folder="snapshots")
    logger = Logger("logs/{}".format(time()))
    for epoch in range(num_epochs):

        print "Epoch: ", epoch
        print "LR: ", eta
        epoch_hist = {"loss": []}

        t = tqdm(range(0, len(train_x), batch_size))
        for lower in t:
            upper = min(len(train_x), lower + batch_size)
            loss = train(train_x[lower:upper],
                         train_y[lower:upper].astype(np.int32), 1.0)  # drop
            t.set_postfix(loss="{:.2f}".format(float(loss)))
            epoch_hist["loss"].append(loss.astype(np.float32))

        # epoch loss
        average_loss = sum(epoch_hist["loss"]) / len(epoch_hist["loss"])
        t.set_postfix(loss="{:.2f}".format(float(average_loss)))
        logger.log_scalar(tag="Training Loss", value=average_loss, step=epoch)

        # validation accuracy
        val_acc = 1.0 - test(valid_x, valid_y.astype(np.int32), 0.0)  # nodrop
        print "Validation Accuracy: ", val_acc
        logger.log_scalar(tag="Validation Accuracy", value=val_acc, step=epoch)
        checkpoint.check(val_acc, params)

    # Report Results on test set (w/ best val acc file)
    best_val_acc_filename = checkpoint.best_val_acc_filename
    print "Using ", best_val_acc_filename, " to calculate best test acc."
    load_model(path=best_val_acc_filename, params=params)
    test_acc = 1.0 - test(test_x, test_y.astype(np.int32), 0.0)  # no drop
    print "Test accuracy: ", test_acc
Esempio n. 20
0
    def __init__(self,
                 sizes,
                 batch_size,
                 epoch_num,
                 use_trained_params=False,
                 filename=None,
                 img_dim=(3, 32, 32),
                 conv_param={
                     'filter_num': 32,
                     'filter_size': 3,
                     'padding': 1,
                     'stride': 1
                 },
                 optimizer='Adam',
                 activation='ReLU',
                 use_dropout=True,
                 dropout_p=0.2,
                 use_bn=True):
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.batch_size = batch_size
        self.epoch_num = epoch_num
        # self.learning_rate = learning_rate
        self.activation = activation
        self.use_dropout = use_dropout
        self.dropout_p = dropout_p
        self.use_bn = use_bn

        self.filter_num = conv_param['filter_num']
        self.filter_size = conv_param['filter_size']
        self.filter_padding = conv_param['padding']
        self.filter_stride = conv_param['stride']
        self.img_c = img_dim[0]
        self.img_wh = img_dim[1]
        self.conv_output_size = int(
            (img_dim[1] - self.filter_size + 2 * self.filter_padding) /
            self.filter_stride) + 1
        self.pool_output_size = int(self.filter_num *
                                    (self.conv_output_size / 2) *
                                    (self.conv_output_size / 2))

        self.opt = optimizer
        optimizers = {
            'SGD': SGD,
            'Momentum_SGD': Momentum_SGD,
            'AdaGrad': AdaGrad,
            'RMSProp': RMSProp,
            'AdaDelta': AdaDelta,
            'Adam': Adam
        }
        self.optimizer = optimizers[self.opt]()

        if use_trained_params:
            path = os.path.dirname(os.path.abspath(__file__))
            loaded_params = np.load(os.path.join(path, filename))
            self.W1 = loaded_params['W1']
            self.b1 = loaded_params['b1']
            self.W2 = loaded_params['W2']
            self.b2 = loaded_params['b2']
            self.W3 = loaded_params['W3']
            self.b3 = loaded_params['b3']
            self.gamma = loaded_params['gamma']
            self.beta = loaded_params['beta']
            if use_bn:
                self.running_mean = loaded_params['running_mean']
                self.running_var = loaded_params['running_var']
        else:
            np.random.seed(12)
            # Conv層重み
            self.W1 = np.sqrt(1 / sizes[0]) * np.random.randn(
                self.filter_num, img_dim[0], self.filter_size,
                self.filter_size)
            self.b1 = np.sqrt(1 / sizes[0]) * np.random.randn(self.filter_num)
            # BatchNorm層
            self.gamma = np.ones(self.filter_num * self.conv_output_size *
                                 self.conv_output_size)
            self.beta = np.zeros(self.filter_num * self.conv_output_size *
                                 self.conv_output_size)
            # FullyConnected層重み(中間層)
            self.W2 = np.sqrt(1 / self.pool_output_size) * np.random.randn(
                self.pool_output_size, self.sizes[1])  #(pool,100)
            self.b2 = np.sqrt(1 / self.pool_output_size) * np.random.randn(
                self.sizes[1])
            # Fullyconnected層重み(出力層)
            self.W3 = np.sqrt(1 / sizes[1]) * np.random.randn(
                self.sizes[1], self.sizes[2])
            self.b3 = np.sqrt(1 / sizes[1]) * np.random.randn(self.sizes[2])

        # layers of network
        activation_function = {'Sigmoid': Sigmoid, 'ReLU': ReLU}
        self.layers = {}
        self.layers['Conv'] = Conv2D(self.W1, self.b1, self.filter_stride,
                                     self.filter_padding)
        if self.use_bn:
            if use_trained_params:
                self.layers['BatchNorm'] = BatchNorm(self.gamma, self.beta,\
                                           running_mean=self.running_mean,running_var=self.running_var)
            else:
                self.layers['BatchNorm'] = BatchNorm(self.gamma, self.beta)
        self.layers['Activation'] = activation_function[self.activation]()
        if self.use_dropout:
            self.layers['Dropout'] = Dropout(self.dropout_p)
        self.layers['Pool'] = MaxPool(pool_h=2, pool_w=2, stride=2)
        self.layers['FullyConnected1'] = FullyConnected(self.W2, self.b2)
        self.layers['Activation2'] = activation_function[self.activation]()
        self.layers['FullyConnected2'] = FullyConnected(self.W3, self.b3)
        self.lastLayer = SoftmaxLoss()
Esempio n. 21
0
def feature_learner(name, images, DIM, dropout=None, is_training=None):
    output = images

    output = Conv2D('{}.conv.Init'.format(name),
                    output,
                    DIM,
                    initializer='glorot_uniform')

    output = ResidualLayer('{}.conv.1.1'.format(name),
                           output,
                           DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.1.2'.format(name),
                           output,
                           DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.1.3'.format(name),
                           output,
                           DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.1.4'.format(name),
                           output,
                           2 * DIM,
                           is_training=is_training,
                           dropout=dropout)

    output = ResidualLayer('{}.conv.2.1'.format(name),
                           output,
                           2 * DIM,
                           stride=2,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.2.2'.format(name),
                           output,
                           2 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.2.3'.format(name),
                           output,
                           2 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.2.4'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)

    output = ResidualLayer('{}.conv.3.1'.format(name),
                           output,
                           4 * DIM,
                           stride=2,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.3.2'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.3.3'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.3.4'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)

    output = ResidualLayer('{}.conv.4.1'.format(name),
                           output,
                           4 * DIM,
                           stride=2,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.4.2'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.4.3'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.4.4'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)

    output = Normalize('{}.convout.3.NORM'.format(name),
                       output,
                       bn_is_training=is_training)
    output = tf.nn.relu(output)
    output = tf.reduce_mean(output, [2, 3])
    return output
Esempio n. 22
0
from network import Network
from layers import Relu, Linear, Conv2D, AvgPool2D, Reshape
from utils import LOG_INFO
from loss import EuclideanLoss, SoftmaxCrossEntropyLoss
from solve_net import train_net, test_net
from load_data import load_mnist_4d
from plot import show
from solve_net import show4category
train_data, test_data, train_label, test_label = load_mnist_4d('data')

# Your model defintion here
# You should explore different model architecture
model = Network()
model.add(Conv2D('conv1', 1, 4, 3, 1, 0.01))
model.add(Relu('relu1'))
model.add(AvgPool2D('pool1', 2, 0))  # output shape: N x 4 x 14 x 14
model.add(Conv2D('conv2', 4, 8, 3, 1, 0.01))
model.add(Relu('relu2'))
model.add(AvgPool2D('pool2', 2, 0))  # output shape: N x 8 x 7 x 7
model.add(Reshape('flatten', (-1, 392)))
model.add(Linear('fc3', 392, 10, 0.01))

loss = SoftmaxCrossEntropyLoss(name='loss')

# Training configuration
# You should adjust these hyperparameters
# NOTE: one iteration means model forward-backwards one batch of samples.
#       one epoch means model has gone through all the training samples.
#       'disp_freq' denotes number of iterations in one epoch to display information.

config = {
Esempio n. 23
0
import time
import pickle
import numpy as np
from layers import Dense, Flatten, Conv2D, MaxPooling2D
from loss import binary_crossentropy
from model import Linear
from activation import Sigmoid
from optimizer import gradient_descent

start_time = time.time()
image = np.random.rand(64, 64)

model = Linear()
model.add(Conv2D(64, input_shape=(64, 64)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128))
model.add(Dense(64))
model.add(Dense(1, activation=Sigmoid, normalize_signal=False))
model.summary()

model.eval(image)
input_data = open("input_data.pickle", "rb")
input_data = np.array(pickle.load(input_data)) / 255.0

label = open("label.pickle", "rb")
label = np.expand_dims(np.array(pickle.load(label)), axis=1)
model.compile(optimizer=gradient_descent, loss=binary_crossentropy)
model.fit(input_data, label, epochs=20, batch_size=16)
def vgg_bn():
    return [
	#1
        Conv2D([3, 3], 64, [1, 1, 1, 1], padding='SAME'),
        Conv2DBatchNorm(64),
        Activation(tf.nn.relu),
	#2
        Conv2D([3, 3], 64, [1, 1, 1, 1], padding='SAME'),
        Conv2DBatchNorm(64),
        Activation(tf.nn.relu),
	#3
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),

	#4
        Conv2D([3, 3], 128, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(128),
        Activation(tf.nn.relu),
	#5
        Conv2D([3, 3], 128, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(128),
        Activation(tf.nn.relu),
	#6
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),
	#7
        Conv2D([3, 3], 256, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(256),
        Activation(tf.nn.relu),
	#8
        Conv2D([3, 3], 256, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(256),
        Activation(tf.nn.relu),
	#9
        Conv2D([3, 3], 256, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(256),
        Activation(tf.nn.relu),
	#10
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),
	#11
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	
	#12
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#13
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#14
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),
	#15
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#16
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#17
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#18
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),


        Flatten(),

        Dense(4096),
        Activation(tf.nn.relu),

        Dropout(0.5),

        Dense(4096),
        Activation(tf.nn.relu),

        Dense(1000),
        Activation(tf.nn.relu),
	Dense(10),
        Activation(tf.nn.softmax),
    ]
    data = data.reshape((n * data.shape[1], n * data.shape[3]) +
                        data.shape[4:])
    cv2.imwrite('try%d.png' % id, data * 255)
    # print(data.shape)
    # print(data)
    # plt.savefig('try%d.pdf'%id)
    # plt.imshow(data)
    # plt.axis('off')


train_data, test_data, train_label, test_label = load_mnist_4d('data')

# Your model defintion here
# You should explore different model architecture
model = Network()
model.add(Conv2D('conv1', 1, 12, 3, 1, 1))
model.add(Relu('relu1'))
model.add(AvgPool2D('pool1', 2, 0))  # output shape: N x 4 x 14 x 14
model.add(Conv2D('conv2', 12, 10, 3, 1, 1))
model.add(Relu('relu2'))
model.add(AvgPool2D('pool2', 2, 0))  # output shape: N x 4 x 7 x 7
model.add(Reshape('flatten', (-1, 49 * 10)))
model.add(Linear('fc3', 49 * 10, 10, 0.1))

# loss = EuclideanLoss(name='loss')
loss = SoftmaxCrossEntropyLoss(name='loss')

# Training configuration
# You should adjust these hyperparameters
# NOTE: one iteration means model forward-backwards one batch of samples.
#       one epoch means model has gone through all the training samples.
Esempio n. 26
0
from cnn import ConvolutionalNeuralNetwork
from layers import Conv2D, Dense, MaxPooling2D
import numpy as np

x = np.array([[1, 2, 3, 4],
              [2, 1, 6, 6],
	          [1, 5, 4, 3],
              [5, 4, 8, 2]])

f = np.array([[2, 3],
              [1, 1]])

cnn = ConvolutionalNeuralNetwork()

cnn.add(Conv2D(f, stride=2, activation='relu'))

cnn.fit(x)
def main():
    test_id = 1
    if test_id == 1:
        #----------
        # Conv Net
        #----------

        optimizer = Adam()

        data = datasets.load_digits()
        X = data.data  # (1797, 64)
        y = data.target

        # Convert to one-hot encoding
        y = to_categorical(y.astype("int"))  # (n_sample, n_class)

        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.4,
                                                            seed=1)

        # Reshape X to (n_samples, channels, height, width)
        X_train = X_train.reshape((-1, 1, 8, 8))
        X_test = X_test.reshape((-1, 1, 8, 8))

        clf = NeuralNetwork(optimizer=optimizer,
                            loss=CrossEntropy,
                            validation_data=(X_test, y_test))

        clf.add(
            Conv2D(n_filters=16,
                   filter_shape=(3, 3),
                   stride=1,
                   input_shape=(1, 8, 8),
                   padding='same'))
        clf.add(Activation('relu'))
        clf.add(Dropout(0.25))
        clf.add(BatchNormalization())
        clf.add(
            Conv2D(n_filters=32, filter_shape=(3, 3), stride=1,
                   padding='same'))
        clf.add(Activation('relu'))
        clf.add(Dropout(0.25))
        clf.add(BatchNormalization())
        clf.add(Flatten())  # 展平层
        clf.add(Dense(256))  # 全连接层
        clf.add(Activation('relu'))
        clf.add(Dropout(0.4))
        clf.add(BatchNormalization())
        clf.add(Dense(10))
        clf.add(Activation('softmax'))

        print()
        clf.summary(name="ConvNet")

        train_err, val_err = clf.fit(X_train,
                                     y_train,
                                     n_epochs=50,
                                     batch_size=64)

        # Training and validation error plot
        n = len(train_err)
        training, = plt.plot(range(n), train_err, label="Training Error")
        validation, = plt.plot(range(n), val_err, label="Validation Error")
        plt.legend(handles=[training, validation])
        plt.title("Error Plot")
        plt.ylabel('Error')
        plt.xlabel('Iterations')
        plt.show()

        _, accuracy = clf.test_on_batch(X_test, y_test)
        print("Accuracy:", accuracy)

        y_pred = np.argmax(clf.predict(X_test), axis=1)
        X_test = X_test.reshape(-1, 8 * 8)
        # Reduce dimension to 2D using PCA and plot the results
        Plot().plot_in_2d(X_test,
                          y_pred,
                          title="Convolutional Neural Network",
                          accuracy=accuracy,
                          legend_labels=range(10))

    if test_id == 2:
        dataset = MultiClassDataset(n_samples=300,
                                    centers=3,
                                    n_features=2,
                                    center_box=(-10.0, 10.0),
                                    cluster_std=1.0,
                                    norm=True,
                                    one_hot=True)
        X = dataset.datas
        y = dataset.labels
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.2,
                                                            seed=1)

        clf = NeuralNetwork(optimizer=optimizer,
                            loss=CrossEntropy,
                            validation_data=(X_test, y_test))
        clf.add(Dense(3))
        clf.add(Activation('softmax'))
        clf.summary(name="SoftmaxReg")
        train_err, val_err = clf.fit(X_train,
                                     y_train,
                                     n_epochs=50,
                                     batch_size=256)
Esempio n. 28
0
import time
from layers import Dense, Flatten, Conv2D
from model import Linear
import numpy as np

start_time = time.time()
image = np.random.rand(64, 64)

model = Linear()
model.add(Conv2D(64))
model.add(Flatten())
model.add(Dense(512))
model.add(Dense(256))
model.add(Dense(64))
model.summary()

print(model.eval(image))
end_time = time.time()
print(f"Total execution time::  {end_time - start_time}")
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = (x_train.astype('float32') / 255).reshape(-1, 1, 28, 28)
y_train = np_utils.to_categorical(y_train.astype('int32'), 10)
x_test = (x_test.astype('float32') / 255).reshape(-1, 1, 28, 28)
y_test = np_utils.to_categorical(y_test.astype('int32'), 10)

threshold = 1000
x_train = x_train[:threshold]
y_train = y_train[:threshold]
x_test = x_test[:threshold]
y_test = y_test[:threshold]

seed = 15
model = Sequential(seed=seed)
model.add(Conv2D(32, (5, 5), activation="relu",
                 inputs_shape=x_train.shape[1:]))
model.add(Pooling((2, 2)))
model.add(Conv2D(16, (3, 3), activation="relu"))
model.add(Pooling((2, 2)))
model.add(Dense(10, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation="softmax"))
model.compile(loss="categorical_crossentropy",
              optimizer=Adam(),
              metric="accuracy")

model.fit(x_train=x_train,
          t_train=y_train,
          x_test=x_test,
          t_test=y_test,
          batch_size=128,
Esempio n. 30
0
    # tile the filters into an image
    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    cv2.imwrite('try%d.png'%id, data*255)
    # print(data.shape)
    # print(data)
    # plt.savefig('try%d.pdf'%id)
    # plt.imshow(data)
    # plt.axis('off')

train_data, test_data, train_label, test_label = load_mnist_4d('data')

# Your model defintion here
# You should explore different model architecture
model = Network()
model.add(Conv2D('conv1', 1, 24, 5, 2, 1))
model.add(Relu('relu1'))
model.add(AvgPool2D('pool1', 2, 0))  # output shape: N x 4 x 14 x 14
model.add(Conv2D('conv2', 24, 10, 5, 2, 1))
model.add(Relu('relu2'))
model.add(AvgPool2D('pool2', 2, 0))  # output shape: N x 4 x 7 x 7
model.add(Reshape('flatten', (-1, 49*10)))
model.add(Linear('fc3', 49*10, 10, 0.1))

# loss = EuclideanLoss(name='loss')
loss = SoftmaxCrossEntropyLoss(name='loss')

# Training configuration
# You should adjust these hyperparameters
# NOTE: one iteration means model forward-backwards one batch of samples.
#       one epoch means model has gone through all the training samples.