Esempio n. 1
0
def test_cnn(test_image_name):
    test_img = mpimg.imread(test_image_name)
    pkl_file = open('params.pkl', 'rb')
    type = test_image_name.rsplit(".")[1]
    params = pickle.load(pkl_file)
    params1, params2, params3, params4, params5, params6, params7, params8, params9 = params
    h, w, ip_channels = test_img.shape
    out_channels = 64
    filter_size = 3
    padding = 1
    layer_1 = Convolution(ip_channels, out_channels, filter_size, padding)
    layer_1.weights = params1[0]
    layer_1.bias=params1[1]
    relu_1 = ReLU()
    layer_2 = Convolution(out_channels, out_channels, filter_size, padding)
    layer_2.weights = params2[0]
    layer_2.bias = params2[1]
    relu_2 = ReLU()
    layer_3 = Convolution(out_channels, out_channels, filter_size, padding)
    layer_3.weights = params3[0]
    layer_3.bias = params3[1]
    relu_3 = ReLU()
    layer_4 = Convolution(out_channels, out_channels, filter_size, padding)
    layer_4.weights = params4[0]
    layer_4.bias = params4[1]
    relu_4 = ReLU()
    layer_5 = Convolution(out_channels, out_channels, filter_size, padding)
    layer_5.weights = params5[0]
    layer_5.bias = params5[1]
    relu_5 = ReLU()
    layer_6 = Convolution(out_channels, out_channels, filter_size, padding)
    layer_6.weights = params6[0]
    layer_6.bias = params6[1]
    relu_6 = ReLU()
    layer_7 = Convolution(out_channels, out_channels, filter_size, padding)
    layer_7.weights = params7[0]
    layer_7.bias = params7[1]
    relu_7 = ReLU()
    layer_8 = Convolution(out_channels, out_channels, filter_size, padding)
    layer_8.weights = params8[0]
    layer_8.bias = params8[1]
    relu_8 = ReLU()
    layer_9 = Convolution(out_channels, ip_channels, filter_size, padding)
    layer_9.weights = params9[0]
    layer_9.bias = params9[1]
    layers = [(layer_1, relu_1), (layer_2, relu_2), (layer_3, relu_3), (layer_4, relu_4), (layer_5, relu_5),
              (layer_6, relu_6),
              (layer_7, relu_7), (layer_8, relu_8), (layer_9, None)]
    cnn_obj = CNN(layers)
    out_img = cnn_obj.forward(test_img)
    output_file_name = test_image_name + "_sr" + str(h) + "." + type
    cv2.imwrite(output_file_name, out_img)
Esempio n. 2
0
    def train_cnn(self, image_name_list, epochs=1):
        self.train_data = []

        self.train_data.extend(self.get_train_data(image_name_list))
        shuffled_train_data = shuffle(self.train_data)
        _, _, ip_channels = shuffled_train_data[0][0].shape
        out_channels = 64
        filter_size = 3
        padding = 1
        lr = 0.0001

        layer_1 = Convolution(ip_channels, out_channels, filter_size, padding)
        relu_1 = ReLU()
        layer_2 = Convolution(out_channels, out_channels, filter_size, padding)
        relu_2 = ReLU()
        layer_3 = Convolution(out_channels, out_channels, filter_size, padding)
        relu_3 = ReLU()
        layer_4 = Convolution(out_channels, out_channels, filter_size, padding)
        relu_4 = ReLU()
        layer_5 = Convolution(out_channels, out_channels, filter_size, padding)
        relu_5 = ReLU()
        layer_6 = Convolution(out_channels, out_channels, filter_size, padding)
        relu_6 = ReLU()
        layer_7 = Convolution(out_channels, out_channels, filter_size, padding)
        relu_7 = ReLU()
        layer_8 = Convolution(out_channels, out_channels, filter_size, padding)
        relu_8 = ReLU()
        layer_9 = Convolution(out_channels, ip_channels, filter_size, padding)

        layers = [(layer_1, relu_1), (layer_2, relu_2), (layer_3, relu_3), (layer_4, relu_4), (layer_5, relu_5),
                  (layer_6, relu_6),
                  (layer_7, relu_7), (layer_8, relu_8), (layer_9, None)]
        cnn_obj = CNN(layers)
        for epoch in range(epochs):
            for x, y in self.train_data:
                cnn_obj = CNN(layers)
                loss, grads = cnn_obj.train_step(x, y)
                print("loss:", loss)
                params1, params2, params3, params4, params5, params6, params7, params8, params9 = grads
                dw1, db1 = params1
                dw2, db2 = params2
                dw3, db3 = params3
                dw4, db4 = params4
                dw5, db5 = params5
                dw6, db6 = params6
                dw7, db7 = params7
                dw8, db8 = params8
                dw9, db9 = params9
                layer_1.weights = layer_1.weights - (lr * dw1)
                layer_1.bias = layer_1.bias - (lr * db1)
                layer_2.weights = layer_2.weights - (lr * dw2)
                layer_2.bias = layer_2.bias - (lr * db2)
                layer_3.weights = layer_3.weights - (lr * dw3)
                layer_3.bias = layer_3.bias - (lr * db3)
                layer_4.weights = layer_4.weights - (lr * dw4)
                layer_4.bias = layer_4.bias - (lr * db4)
                layer_5.weights = layer_5.weights - (lr * dw5)
                layer_5.bias = layer_5.bias - (lr * db5)
                layer_6.weights = layer_6.weights - (lr * dw6)
                layer_6.bias = layer_6.bias - (lr * db6)
                layer_7.weights = layer_7.weights - (lr * dw7)
                layer_7.bias = layer_7.bias - (lr * db7)
                layer_8.weights = layer_8.weights - (lr * dw8)
                layer_8.bias = layer_8.bias - (lr * db8)
                layer_9.weights = layer_9.weights - (lr * dw9)
                layer_9.bias = layer_9.bias - (lr * db9)
                layers = [(layer_1, relu_1), (layer_2, relu_2), (layer_3, relu_3), (layer_4, relu_4), (layer_5, relu_5),
                          (layer_6, relu_6),
                          (layer_7, relu_7), (layer_8, relu_8), (layer_9, None)]

        return cnn_obj.params, layer_9.A_curr