class PI(object): def __init__(self, d, lr, lambda_pi_usl, use_pi): """ flags for each regularizor """ self.use_pi = use_pi """ data and external toolkits """ self.d = d # dataset manager self.ls = Layers() self.lf = LossFunctions(self.ls, d, self.encoder) """ placeholders defined outside""" self.lr = lr self.lambda_pi_usl = lambda_pi_usl def encoder(self, x, is_train=True, do_update_bn=True): """ https://arxiv.org/pdf/1610.02242.pdf """ if is_train: h = self.distort(x) h = self.ls.get_corrupted(x, 0.15) else: h = x scope = '1' h = self.ls.conv2d(scope + '_1', h, 128, activation=self.ls.lrelu) h = self.ls.conv2d(scope + '_2', h, 128, activation=self.ls.lrelu) h = self.ls.conv2d(scope + '_3', h, 128, activation=self.ls.lrelu) h = self.ls.max_pool(h) if is_train: h = tf.nn.dropout(h, 0.5) scope = '2' h = self.ls.conv2d(scope + '_1', h, 256, activation=self.ls.lrelu) h = self.ls.conv2d(scope + '_2', h, 256, activation=self.ls.lrelu) h = self.ls.conv2d(scope + '_3', h, 256, activation=self.ls.lrelu) h = self.ls.max_pool(h) if is_train: h = tf.nn.dropout(h, 0.5) scope = '3' h = self.ls.conv2d(scope + '_1', h, 512, activation=self.ls.lrelu) h = self.ls.conv2d(scope + '_2', h, 256, activation=self.ls.lrelu, filter_size=(1, 1)) h = self.ls.conv2d(scope + '_3', h, 128, activation=self.ls.lrelu, filter_size=(1, 1)) h = tf.reduce_mean(h, reduction_indices=[1, 2]) # Global average pooling h = self.ls.dense(scope, h, self.d.l) return h def build_graph_train(self, x_l, y_l, x, is_supervised=True): o = dict() # output loss = 0 logit = self.encoder(x) with tf.variable_scope(tf.get_variable_scope(), reuse=True): logit_l = self.encoder( x_l, is_train=True, do_update_bn=False) # for pyx and vat loss computation """ Classification Loss """ o['Ly'], o['accur'] = self.lf.get_loss_pyx(logit_l, y_l) loss += o['Ly'] """ PI Model Loss """ if self.use_pi: with tf.variable_scope(tf.get_variable_scope(), reuse=True): _, _, o['Lp'] = self.lf.get_loss_pi(x, logit, is_train=True) loss += self.lambda_pi_usl * o['Lp'] else: o['Lp'] = tf.constant(0) """ set losses """ o['loss'] = loss self.o_train = o """ set optimizer """ optimizer = tf.train.AdamOptimizer(learning_rate=self.lr, beta1=0.5) #self.op = optimizer.minimize(loss) grads = optimizer.compute_gradients(loss) for i, (g, v) in enumerate(grads): if g is not None: #g = tf.Print(g, [g], "g %s = "%(v)) grads[i] = (tf.clip_by_norm(g, 5), v) # clip gradients else: print('g is None:', v) v = tf.Print(v, [v], "v = ", summarize=10000) self.op = optimizer.apply_gradients(grads) # return train_op def build_graph_test(self, x_l, y_l): o = dict() # output loss = 0 logit_l = self.encoder( x_l, is_train=False, do_update_bn=False) # for pyx and vat loss computation """ classification loss """ o['Ly'], o['accur'] = self.lf.get_loss_pyx(logit_l, y_l) loss += o['Ly'] """ set losses """ o['loss'] = loss self.o_test = o def distort(self, x): _d = self.d def _distort(a_image): """ bounding_boxes: A Tensor of type float32. 3-D with shape [batch, N, 4] describing the N bounding boxes associated with the image. Bounding boxes are supplied and returned as [y_min, x_min, y_max, x_max] """ # shape: [1, 1, 4] bounding_boxes = tf.constant([[[1 / 10, 1 / 10, 9 / 10, 9 / 10]]], dtype=tf.float32) begin, size, _ = tf.image.sample_distorted_bounding_box( (_d.h, _d.w, _d.c), bounding_boxes, min_object_covered=(8.5 / 10.0), aspect_ratio_range=[7.0 / 10.0, 10.0 / 7.0]) a_image = tf.slice(a_image, begin, size) """ for the purpose of distorting not use tf.image.resize_image_with_crop_or_pad under """ a_image = tf.image.resize_images(a_image, [_d.h, _d.w]) """ due to the size of channel returned from tf.image.resize_images is not being given, specify it manually. """ a_image = tf.reshape(a_image, [_d.h, _d.w, _d.c]) return a_image """ process batch times in parallel """ return tf.map_fn(_distort, x)
class ImageInterface(object): def __init__(self, is_3d, is_read_attention, is_write_attention, read_n, write_n, h, w, c): """ to manage do_share flag inside Layers object, ImageInterface has Layers as its own property """ self.do_share = False self.ls = Layers() self.is_3d = is_3d self.read_n = read_n self.write_n = write_n self.h = h self.w = w self.c = c if is_read_attention: self.read = self._read_attention else: self.read = self._read_no_attention if is_write_attention: self.write = self._write_attention else: self.write = self._write_no_attention def set_do_share(self, flag): self.do_share = flag self.ls.set_do_share(flag) ########################### """ READER """ ########################### def _read_no_attention(self, x,x_hat, h_dec): _h,_w,_c = self.h, self.w, self.c if self.is_3d: # x is a raw image and x_hat is an error one, and eash is handled as a different channel, # so the shape of r and return are [-1, _h,_w,_c*2] USE_CONV_READ = False # 170720 if USE_CONV_READ: scope = 'read_1' x = self.ls.conv2d(scope+'_1', x, 64, activation=tf.nn.elu) x = self.ls.max_pool(x) x = self.ls.conv2d(scope+'_2', x, 64, activation=tf.nn.elu) x = self.ls.max_pool(x) x = self.ls.conv2d(scope+'_3', x, 64, activation=tf.nn.elu) scope = 'read_hat_1' x_hat = self.ls.conv2d(scope+'_1', x_hat, 16, activation=tf.nn.elu) x_hat = self.ls.max_pool(x_hat) x_hat = self.ls.conv2d(scope+'_2', x_hat, 16, activation=tf.nn.elu) x_hat = self.ls.max_pool(x_hat) x_hat = self.ls.conv2d(scope+'_3', x_hat, 16, activation=tf.nn.elu) r = tf.concat([x,x_hat], 3) h_dec = tf.reshape( self.ls.dense(scope, h_dec, _h*_w*_c), [-1, int(_h/4), int(_w/4),_c*4*4]) return tf.concat([r,h_dec], 3) elif False: scope = 'read_1' x = self.ls.conv2d(scope+'_1', x, 128, activation=tf.nn.elu) x = self.ls.conv2d(scope+'_2', x, 128, activation=tf.nn.elu) x = self.ls.conv2d(scope+'_3', x, 128, activation=tf.nn.elu) x = self.ls.max_pool(x) scope = 'read_2' x = self.ls.conv2d(scope+'_1', x, 256, activation=tf.nn.elu) x = self.ls.conv2d(scope+'_2', x, 256, activation=tf.nn.elu) x = self.ls.conv2d(scope+'_3', x, 256, activation=tf.nn.elu) x = self.ls.max_pool(x) scope = 'read_3' x = self.ls.conv2d(scope+'_1', x, 512, activation=tf.nn.elu) x = self.ls.conv2d(scope+'_2', x, 256, activation=tf.nn.elu, filter_size=(1,1)) x = self.ls.conv2d(scope+'_3', x, 128, activation=tf.nn.elu, filter_size=(1,1)) x = self.ls.conv2d(scope+'_4', x, 64, activation=tf.nn.elu, filter_size=(1,1)) scope = 'read_hat_1' x_hat = self.ls.conv2d(scope+'_1', x_hat, 128, activation=tf.nn.elu) x_hat = self.ls.max_pool(x_hat) scope = 'read_hat_2' x_hat = self.ls.conv2d(scope+'_1', x_hat, 256, activation=tf.nn.elu) x_hat = self.ls.max_pool(x_hat) scope = 'read_hat_3' x_hat = self.ls.conv2d(scope+'_4', x_hat, 16, activation=tf.nn.elu, filter_size=(1,1)) r = tf.concat([x,x_hat], 3) h_dec = tf.reshape( self.ls.dense(scope, h_dec, _h*_w*_c), [-1, int(_h/4), int(_w/4),_c*4*4]) return tf.concat([r,h_dec], 3) else: r = tf.concat([x,x_hat], 3) USE_DEC_LOWEST_PREV = True if USE_DEC_LOWEST_PREV: # use decoder feedback as element-wise adding # Eq.(21) in [Gregor, 2016] scope = 'read' USE_CONV = True if USE_CONV: h_dec = tf.reshape( self.ls.dense(scope, h_dec, _h*_w*_c), [-1, _h,_w,_c]) h_dec = self.ls.conv2d("conv", h_dec, _c*2, activation=tf.nn.elu) return r + h_dec else: h_dec = tf.reshape( self.ls.dense(scope, h_dec, _h*_w*_c*2), [-1, _h,_w,_c*2]) return r + h_dec else: return r else: return tf.concat([x,x_hat], 1) def _read_attention( self, x, x_hat, h_dec ): _h,_w,_c = self.h, self.w, self.c N = self.read_n if self.is_3d: Fx,Fy,gamma = self._set_window("read", h_dec,N) # Fx is (?, 5, 32, 3) # gamma is (?, 3) def filter_img(img,Fx,Fy,gamma, N): # Fx and Fy are (?, 5, 32, 3) Fxt = tf.transpose(Fx,perm=[0,3,2,1]) Fy = tf.transpose(Fy,perm=[0,3,2,1]) # img.get_shape() has already been (?, 32, 32, 3) img = tf.transpose(img, perm=[0,3,2,1]) # tf.matmul(img,Fxt) is (?, 3, 32, 5) img_Fxt = tf.matmul(img,Fxt) img_Fxt = tf.transpose(img_Fxt, perm=[0,1,3,2]) # Fy: (?, 3, 32, 5) Fy = tf.transpose(Fy,perm=[0,1,3,2]) glimpse = tf.matmul(Fy, img_Fxt, transpose_b=True) # glimpse.get_shape() is (?, 3, 32, 32) glimpse = tf.transpose(glimpse, perm=[0,2,3,1]) glimpse = tf.reshape(glimpse,[-1,N*N, _c]) glimpse = tf.transpose(glimpse, perm=[0,2,1]) gamma = tf.reshape(gamma,[-1,1, _c]) gamma = tf.transpose(gamma, perm=[0,2,1]) o = glimpse*gamma o = tf.transpose(o, perm=[0,2,1]) return o x = filter_img( x, Fx, Fy, gamma, N) # batch x (read_n*read_n) x_hat = filter_img( x_hat, Fx, Fy, gamma, N) x = tf.reshape(x, [-1, N,N,_c]) x_hat = tf.reshape(x_hat, [-1, N,N,_c]) return tf.concat([x,x_hat], 3) else: Fx,Fy,gamma = self._set_window("read", h_dec,N) # Fx: (?, 5, 32), gamma: (?, 1) def filter_img(img,Fx,Fy,gamma,N): #print('filter_img in is_image == False') Fxt = tf.transpose(Fx,perm=[0,2,1]) img = tf.reshape(img,[-1,_w,_h]) # Fxt : (?, 32, 5) # img : (?, 32, 32) glimpse = tf.matmul(Fy,tf.matmul(img,Fxt)) glimpse = tf.reshape(glimpse,[-1,N*N]) return glimpse*tf.reshape(gamma,[-1,1]) x = filter_img( x, Fx, Fy, gamma, N) # batch x (read_n*read_n) x_hat = filter_img( x_hat, Fx, Fy, gamma, N) return tf.concat([x,x_hat], 1) # concat along feature axis ########################### """ WRITER """ ########################### def _write_no_attention(self, h): scope = "write" _h,_w,_c = self.h, self.w, self.c if self.is_3d: IS_SIMPLE_WRITE = True if IS_SIMPLE_WRITE : print('IS_SIMPLE_WRITE:', IS_SIMPLE_WRITE) return tf.reshape( self.ls.dense(scope, h, _h*_w*_c, tf.nn.elu), [-1, _h, _w, _c]) else: IS_CONV_LSTM = True if IS_CONV_LSTM : raise NotImplementedError else: activation = tf.nn.elu print('h in write:', h) # h.shape is (_b, RNN_SIZES[0]) L = 1 h = tf.reshape( h, (-1, 2,2,64*3)) # should match to RNN_SIZES[0] h = self.ls.deconv2d(scope+'_1', h, 64*2) # 4 h = activation(h) L = 2 h = self.ls.deconv2d(scope+'_2', h, 16*3) # 8 h = activation(h) h = PS(h, 4, color=True) print('h in write:', h) return tf.reshape( h, [-1, _h, _w, _c]) else: return self.ls.dense( scope,h, _h*_w*_c ) def _write_attention(self, h_dec): scope = "writeW" N = self.write_n write_size = N*N _h,_w,_c = self.h, self.w, self.c Fx, Fy, gamma = self._set_window("write", h_dec, N) if self.is_3d: # Fx and Fy are (?, 5, 32, 3), gamma is (?, 3) w = self.ls.dense( scope, h_dec, write_size*_c) # batch x (write_n*write_n) [ToDo] replace self.ls.dense with deconv w = tf.reshape(w,[tf.shape(h_dec)[0],N,N,_c]) w = tf.transpose(w, perm=[0,3,1,2]) Fyt = tf.transpose(Fx,perm=[0,3,2,1]) Fx = tf.transpose(Fx, perm=[0,3,1,2]) w_Fx = tf.matmul(w, Fx) # w_Fx.get_shape() is (?, 3, 5, 32) w_Fx = tf.transpose(w_Fx, perm=[0,1,3,2]) wr = tf.matmul(Fyt, w_Fx, transpose_b=True) wr = tf.reshape(wr,[tf.shape(h_dec)[0],_w*_h, _c]) wr = tf.transpose(wr, perm=[0,2,1]) inv_gamma = tf.reshape(1.0/gamma,[-1,1, _c]) inv_gamma = tf.transpose(inv_gamma, perm=[0,2,1]) o = wr*inv_gamma o = tf.transpose(o, perm=[0,2,1]) o = tf.reshape(o, [tf.shape(h_dec)[0], _w, _h, _c]) return o else: w = self.ls.dense( scope, h_dec,write_size) # batch x (write_n*write_n) w = tf.reshape(w,[tf.shape(h_dec)[0],N,N]) Fyt = tf.transpose(Fy,perm=[0,2,1]) wr = tf.matmul(Fyt,tf.matmul(w,Fx)) wr = tf.reshape(wr,[tf.shape(h_dec)[0],_w*_h]) return wr*tf.reshape(1.0/gamma,[-1,1]) ########################### """ Filter Functions """ ########################### def _filterbank(self, gx, gy, sigma2,delta, N): if self.is_3d: _h,_w,_c = self.h, self.w, self.c # gx and delta are (?,3) grid_i = tf.reshape(tf.cast(tf.range(N*_c), tf.float32), [1, -1, _c]) mu_x = gx + (grid_i - N / 2 - 0.5) * delta # eq 19 mu_y = gy + (grid_i - N / 2 - 0.5) * delta # eq 20 # shape : [1, N, _c] w = tf.reshape( tf.cast( tf.range(_w*_c), tf.float32), [1, 1, -1, _c]) h = tf.reshape( tf.cast( tf.range(_h*_c), tf.float32), [1, 1, -1, _c]) mu_x = tf.reshape(mu_x, [-1, N, 1, _c]) mu_y = tf.reshape(mu_y, [-1, N, 1, _c]) sigma2 = tf.reshape(sigma2, [-1, 1, 1, _c]) Fx = tf.exp(-tf.square((w - mu_x) / (2*sigma2))) # 2*sigma2? Fy = tf.exp(-tf.square((h - mu_y) / (2*sigma2))) # batch x N x B # normalize, sum over A and B dims Fx=Fx/tf.maximum(tf.reduce_sum(Fx,2,keep_dims=True),eps) Fy=Fy/tf.maximum(tf.reduce_sum(Fy,2,keep_dims=True),eps) return Fx,Fy else: grid_i = tf.reshape(tf.cast(tf.range(N), tf.float32), [1, -1]) # gx, delta and mu_x are (?, 1), and grid_i is (1, 5)) mu_x = gx + (grid_i - N / 2 - 0.5) * delta # eq 19 mu_y = gy + (grid_i - N / 2 - 0.5) * delta # eq 20 h = tf.reshape(tf.cast(tf.range(_h), tf.float32), [1, 1, -1]) w = tf.reshape(tf.cast(tf.range(_w), tf.float32), [1, 1, -1]) mu_x = tf.reshape(mu_x, [-1, N, 1]) mu_y = tf.reshape(mu_y, [-1, N, 1]) sigma2 = tf.reshape(sigma2, [-1, 1, 1]) Fx = tf.exp(-tf.square((w - mu_x) / (2*sigma2))) # 2*sigma2? Fy = tf.exp(-tf.square((h - mu_y) / (2*sigma2))) # batch x N x B # normalize, sum over A and B dims Fx=Fx/tf.maximum(tf.reduce_sum(Fx,2,keep_dims=True),eps) Fy=Fy/tf.maximum(tf.reduce_sum(Fy,2,keep_dims=True),eps) return Fx,Fy def _set_window(self, scope, h_dec,N): if self.is_3d: _h,_w,_c = self.h, self.w, self.c # get five (BATCH_SIZE, _c) matrixes gx_, gy_, log_sigma2, log_delta, log_gamma = self.ls.split( self.ls.dense(scope, h_dec, _c*5), 1, [_c]*5) gx_ = tf.reshape(gx_, [-1,1,_c]) gy_ = tf.reshape(gy_, [-1,1,_c]) log_sigma2 = tf.reshape(log_sigma2, [-1,1,_c]) log_delta = tf.reshape(log_delta, [-1,1,_c]) log_gamma = tf.reshape(log_gamma, [-1,1,_c]) gx = (_w + 1)/2*(gx_+1) gy = (_h + 1)/2*(gy_+1) sigma2 = tf.exp(log_sigma2) delta = ( max(_h, _w) -1 ) / ( N -1 ) * tf.exp( log_delta ) # batch x N return self._filterbank( gx, gy, sigma2, delta, N) + ( tf.exp(log_gamma),) else: params = self.ls.dense(scope, h_dec,5) gx_,gy_,log_sigma2,log_delta,log_gamma=tf.split(value=params, num_or_size_splits=5, axis=1) gx=(_w + 1)/2*(gx_+1) gy=(_h + 1)/2*(gy_+1) sigma2=tf.exp(log_sigma2) delta=(max(_h, _w)-1)/(N-1)*tf.exp(log_delta) # batch x N return self._filterbank(gx,gy,sigma2,delta,N)+(tf.exp(log_gamma),)