def vgg_bn():
    return [
	#1
        Conv2D([7, 7], 64, [1, 3, 3, 1]),
	Conv2DBatchNorm(64),
	Activation(tf.nn.relu),
	MaxPool([1,4,4,1],[1,1,1,1]),
	
	#2
	Convolutional_block(f = 3, filters = [64,64,256],s = 1),
	MaxPool([1,5,5,1],[1,1,1,1]),
	Dropout(0.5),
	Identity_block(f = 3, filters=[64,64,256]),
	Dropout(0.5),

	Identity_block(f = 3, filters=[64,64,256]),
	Dropout(0.5),
	MaxPool([1,2,2,1],[1,1,1,1]),
	#3
	Convolutional_block(f = 3, filters = [128,128,512],s = 2),
	Dropout(0.5),
	Identity_block(f = 3, filters=[128,128,512]),
	Dropout(0.5),
	Identity_block(f = 3, filters=[128,128,512]),
	Dropout(0.5),
	MaxPool([1,2,2,1],[1,1,1,1]),

	#4
	Convolutional_block(f = 3, filters = [256,256,1024],s = 2),
	Identity_block(f = 3, filters=[256,256,1024]),
	Identity_block(f = 3, filters=[256,256,1024]),
	Identity_block(f = 3, filters=[256,256,1024]),
	Identity_block(f = 3, filters=[256,256,1024]),
	Identity_block(f = 3, filters=[256,256,1024]),
        Flatten(),
        Dense(128),
        Activation(tf.sigmoid),

        Dropout(0.5),

        Dense(10),
	#Fully_connected(),
        Activation(tf.nn.softmax),
    ]
Esempio n. 2
0
def main():
    c = color_codes()
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

    try:
        net = load_model('/home/mariano/Desktop/test.tf')
    except IOError:
        x = Input([784])
        x_image = Reshape([28, 28, 1])(x)
        x_conv1 = Conv(filters=32,
                       kernel_size=(5, 5),
                       activation='relu',
                       padding='same')(x_image)
        h_pool1 = MaxPool((2, 2), padding='same')(x_conv1)
        h_conv2 = Conv(filters=64,
                       kernel_size=(5, 5),
                       activation='relu',
                       padding='same')(h_pool1)
        h_pool2 = MaxPool((2, 2), padding='same')(h_conv2)
        h_fc1 = Dense(1024, activation='relu')(h_pool2)
        h_drop = Dropout(0.5)(h_fc1)
        y_conv = Dense(10)(h_drop)

        net = Model(x,
                    y_conv,
                    optimizer='adam',
                    loss='categorical_cross_entropy',
                    metrics='accuracy')

    print(c['c'] + '[' + strftime("%H:%M:%S") + '] ' + c['g'] + c['b'] +
          'Original (MNIST)' + c['nc'] + c['g'] + ' net ' + c['nc'] + c['b'] +
          '(%d parameters)' % net.count_trainable_parameters() + c['nc'])

    net.fit(mnist.train.images,
            mnist.train.labels,
            val_data=mnist.test.images,
            val_labels=mnist.test.labels,
            patience=10,
            epochs=200,
            batch_size=1024)

    save_model(net, '/home/mariano/Desktop/test.tf')
Esempio n. 3
0
    def addMaxPool(self, **kwargs):
        """
        Add MaxPooling activation layer.
        """

        input_layer = self.input_layer if not self.all_layers\
            else self.all_layers[-1]

        self.n_maxpool_layers += 1
        name = "maxpool%i" % self.n_maxpool_layers

        new_layer = MaxPool(input_layer, name=name, **kwargs)

        self.all_layers += (new_layer, )
Esempio n. 4
0
def inner_model(trainable, x):
    layers_list = [
        Reshape([-1, 28, 28, 1]),
        Conv(32),
        BatchNormalization(),
        Relu(),
        MaxPool(),
        Conv(64),
        BatchNormalization(),
        Relu(),
        MaxPool(),
        Reshape([-1, 7 * 7 * 64]),
        FullyConnected(1024),
        Relu(),
        FullyConnected(10)
    ]
    variable_saver = VariableSaver()
    signal = x
    print('shape', signal.get_shape())
    for idx, layer in enumerate(layers_list):
        signal = layer.contribute(signal, idx, trainable,
                                  variable_saver.save_variable)
        print('shape', signal.get_shape())
    return signal, variable_saver.var_list
Esempio n. 5
0
    def __init__(self):
        super(Resnet, self).__init__()
        self.conv_1 = Convolution_Layer(kernel_height=7,
                                        kernel_width=7,
                                        channel_in=3,
                                        channel_out=24,
                                        stride=2,
                                        padding='SAME')
        self.batch_norm_1 = Batch_Normalization(depth=24,
                                                decay=0.99,
                                                convolution=True)
        self.max_pool_1 = MaxPool(kernel_size=3, strides=1, padding='VALID')

        self.block_ident_1 = Identity(kernel_height=3,
                                      kernel_width=3,
                                      channel_in=24,
                                      channel_out=48,
                                      stride=1,
                                      decay=0.99,
                                      batch_size=batch_size,
                                      output_dim=48)
        self.block_ident_2 = Identity(kernel_height=3,
                                      kernel_width=3,
                                      channel_in=48,
                                      channel_out=64,
                                      stride=1,
                                      decay=0.99,
                                      batch_size=batch_size,
                                      output_dim=48)
        self.block_ident_3 = Identity(kernel_height=3,
                                      kernel_width=3,
                                      channel_in=64,
                                      channel_out=96,
                                      stride=1,
                                      decay=0.99,
                                      batch_size=batch_size,
                                      output_dim=48)

        self.avg_pool = AvgPooling(kernel_height=7,
                                   kernel_width=7,
                                   strides=2,
                                   padding='VALID')

        self.flat_1 = Flatten_layer()
        self.dense_1 = Dense_layer(42336, 512)
        self.dense_2 = Dense_layer(512, num_classes)
Esempio n. 6
0
    def __init__(self,
                 sizes,
                 batch_size,
                 epoch_num,
                 use_trained_params=False,
                 filename=None,
                 img_dim=(3, 32, 32),
                 conv_param={
                     'filter_num': 32,
                     'filter_size': 3,
                     'padding': 1,
                     'stride': 1
                 },
                 optimizer='Adam',
                 activation='ReLU',
                 use_dropout=True,
                 dropout_p=0.2,
                 use_bn=True):
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.batch_size = batch_size
        self.epoch_num = epoch_num
        # self.learning_rate = learning_rate
        self.activation = activation
        self.use_dropout = use_dropout
        self.dropout_p = dropout_p
        self.use_bn = use_bn

        self.filter_num = conv_param['filter_num']
        self.filter_size = conv_param['filter_size']
        self.filter_padding = conv_param['padding']
        self.filter_stride = conv_param['stride']
        self.img_c = img_dim[0]
        self.img_wh = img_dim[1]
        self.conv_output_size = int(
            (img_dim[1] - self.filter_size + 2 * self.filter_padding) /
            self.filter_stride) + 1
        self.pool_output_size = int(self.filter_num *
                                    (self.conv_output_size / 2) *
                                    (self.conv_output_size / 2))

        self.opt = optimizer
        optimizers = {
            'SGD': SGD,
            'Momentum_SGD': Momentum_SGD,
            'AdaGrad': AdaGrad,
            'RMSProp': RMSProp,
            'AdaDelta': AdaDelta,
            'Adam': Adam
        }
        self.optimizer = optimizers[self.opt]()

        if use_trained_params:
            path = os.path.dirname(os.path.abspath(__file__))
            loaded_params = np.load(os.path.join(path, filename))
            self.W1 = loaded_params['W1']
            self.b1 = loaded_params['b1']
            self.W2 = loaded_params['W2']
            self.b2 = loaded_params['b2']
            self.W3 = loaded_params['W3']
            self.b3 = loaded_params['b3']
            self.gamma = loaded_params['gamma']
            self.beta = loaded_params['beta']
            if use_bn:
                self.running_mean = loaded_params['running_mean']
                self.running_var = loaded_params['running_var']
        else:
            np.random.seed(12)
            # Conv層重み
            self.W1 = np.sqrt(1 / sizes[0]) * np.random.randn(
                self.filter_num, img_dim[0], self.filter_size,
                self.filter_size)
            self.b1 = np.sqrt(1 / sizes[0]) * np.random.randn(self.filter_num)
            # BatchNorm層
            self.gamma = np.ones(self.filter_num * self.conv_output_size *
                                 self.conv_output_size)
            self.beta = np.zeros(self.filter_num * self.conv_output_size *
                                 self.conv_output_size)
            # FullyConnected層重み(中間層)
            self.W2 = np.sqrt(1 / self.pool_output_size) * np.random.randn(
                self.pool_output_size, self.sizes[1])  #(pool,100)
            self.b2 = np.sqrt(1 / self.pool_output_size) * np.random.randn(
                self.sizes[1])
            # Fullyconnected層重み(出力層)
            self.W3 = np.sqrt(1 / sizes[1]) * np.random.randn(
                self.sizes[1], self.sizes[2])
            self.b3 = np.sqrt(1 / sizes[1]) * np.random.randn(self.sizes[2])

        # layers of network
        activation_function = {'Sigmoid': Sigmoid, 'ReLU': ReLU}
        self.layers = {}
        self.layers['Conv'] = Conv2D(self.W1, self.b1, self.filter_stride,
                                     self.filter_padding)
        if self.use_bn:
            if use_trained_params:
                self.layers['BatchNorm'] = BatchNorm(self.gamma, self.beta,\
                                           running_mean=self.running_mean,running_var=self.running_var)
            else:
                self.layers['BatchNorm'] = BatchNorm(self.gamma, self.beta)
        self.layers['Activation'] = activation_function[self.activation]()
        if self.use_dropout:
            self.layers['Dropout'] = Dropout(self.dropout_p)
        self.layers['Pool'] = MaxPool(pool_h=2, pool_w=2, stride=2)
        self.layers['FullyConnected1'] = FullyConnected(self.W2, self.b2)
        self.layers['Activation2'] = activation_function[self.activation]()
        self.layers['FullyConnected2'] = FullyConnected(self.W3, self.b3)
        self.lastLayer = SoftmaxLoss()
Esempio n. 7
0
    reg = 0.0

    model.add_layer(
        Convolution(32, (3, 3),
                    input_shape=(batch_size, X_tr.shape[1], X_tr.shape[2],
                                 X_tr.shape[3]),
                    weight_initializer=NormalInitializer(std)))
    model.add_layer(ReLuActivation())
    model.add_layer(BatchNormalization())
    model.add_layer(
        Convolution(32, (3, 3),
                    weight_initializer=NormalInitializer(std),
                    padding='same'))

    model.add_layer(ReLuActivation())
    model.add_layer(MaxPool((2, 2)))
    model.add_layer(Flatten())

    model.add_layer(
        Affine(100, weight_initializer=NormalInitializer(std), reg=reg))
    model.add_layer(ReLuActivation())
    model.add_layer(DropoutLayer(drop_rate=0.3))
    model.add_layer(
        Affine(n_classes, weight_initializer=NormalInitializer(std), reg=reg))

    model.initialize(loss=CrossEntropyLoss(),
                     optimizer=Adam(learning_rate=0.001,
                                    decay_fst_mom=0.9,
                                    decay_sec_mom=0.999))
    # with open('model_90_49.14262959724404', 'rb') as file:
    #     model = pickle.load(file)
def vgg_bn():
    return [
	#1
        Conv2D([3, 3], 64, [1, 1, 1, 1], padding='SAME'),
        Conv2DBatchNorm(64),
        Activation(tf.nn.relu),
	#2
        Conv2D([3, 3], 64, [1, 1, 1, 1], padding='SAME'),
        Conv2DBatchNorm(64),
        Activation(tf.nn.relu),
	#3
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),

	#4
        Conv2D([3, 3], 128, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(128),
        Activation(tf.nn.relu),
	#5
        Conv2D([3, 3], 128, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(128),
        Activation(tf.nn.relu),
	#6
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),
	#7
        Conv2D([3, 3], 256, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(256),
        Activation(tf.nn.relu),
	#8
        Conv2D([3, 3], 256, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(256),
        Activation(tf.nn.relu),
	#9
        Conv2D([3, 3], 256, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(256),
        Activation(tf.nn.relu),
	#10
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),
	#11
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	
	#12
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#13
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#14
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),
	#15
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#16
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#17
        Conv2D([3, 3], 512, [1, 1, 1, 1],padding='SAME'),
        Conv2DBatchNorm(512),
        Activation(tf.nn.relu),
	#18
	MaxPool([1,2,2,1],[1,2,2,1],padding='SAME'),


        Flatten(),

        Dense(4096),
        Activation(tf.nn.relu),

        Dropout(0.5),

        Dense(4096),
        Activation(tf.nn.relu),

        Dense(1000),
        Activation(tf.nn.relu),
	Dense(10),
        Activation(tf.nn.softmax),
    ]