def generate_uv_coordinates( x, y, z, lon, lat, alt, ra, dec, num_times, num_baselines, mjd_start, dt_s, freq_hz, uv_cut_radius_wavelengths ): x, y, z = convert_enu_to_ecef(x, y, z, lon, lat, alt) uu, vv, ww = generate_baseline_uvw(x, y, z, ra, dec, num_times, num_baselines, mjd_start, dt_s) wave_length = 299792458.0 / freq_hz uu /= wave_length vv /= wave_length ww /= wave_length # uv_r_cut = uv_cut_radius_wavelengths # uv_r = (uu ** 2 + vv ** 2) ** 0.5 # uv_sort_idx = numpy.argsort(uv_r) # uv_r = uv_r[uv_sort_idx] # uu = uu[uv_sort_idx] # vv = vv[uv_sort_idx] # ww = ww[uv_sort_idx] # i_uv_max = numpy.argmax(uv_r >= uv_r_cut) # uu = uu[:i_uv_max] # vv = vv[:i_uv_max] # ww = ww[:i_uv_max] uu = numpy.hstack((uu, -uu)) vv = numpy.hstack((vv, -vv)) ww = numpy.hstack((ww, -ww)) return uu, vv, ww
def main(): print("*" * 80) print("*" * 80) print("THIS SCRIPT IS DEPRECATED IN FAVOUR OF: generate_uv_coverage_2.py") print("*" * 80) print("*" * 80) return # Load station positions t0 = time.time() v4d_file = join("v4d.tm", "layout_enu_stations.txt") v4o1_file = join("v4o1.tm", "layout_enu_stations.txt") v4d = numpy.loadtxt(v4d_file) v4o1 = numpy.loadtxt(v4o1_file) station_radius_m = 35.0 / 2.0 num_stations = v4d.shape[0] assert v4o1.shape[0] == v4d.shape[0] print("- loading coordinates took %.2f s" % (time.time() - t0)) freq = 100.0e6 wave_length = 299792458.0 / freq lon = radians(116.63128900) lat = radians(-26.69702400) alt = 0.0 ra = radians(68.698903779331502) dec = radians(-26.568851215532160) mjd_mid = 57443.4375000000 snapshot = True if snapshot: mjd_start = mjd_mid obs_length = 0.0 dt_s = 0.0 num_times = 1 else: obs_length = 4.0 * 3600.0 # seconds num_times = int(obs_length / (3 * 60.0)) dt_s = obs_length / float(num_times) mjd_start = mjd_mid - (obs_length / 2.0) / (3600.0 * 24.0) print("- obs_length = %.2f s (%.2f h)" % (obs_length, obs_length / 3600.0)) print("- num_times =", num_times) num_baselines = num_stations * (num_stations - 1) / 2 out_dir = "uv_%3.1fh" % (obs_length / 3600.0) if not os.path.isdir(out_dir): os.makedirs(out_dir) # plot_layouts(v4d, v4o1, station_radius_m, out_dir) # t0 = time.time() x, y, z = convert_enu_to_ecef(v4d[:, 0], v4d[:, 1], v4d[:, 2], lon, lat, alt) uu_v4d, vv_v4d, ww_v4d = generate_baseline_uvw(x, y, z, ra, dec, num_times, num_baselines, mjd_start, dt_s) x, y, z = convert_enu_to_ecef(v4o1[:, 0], v4o1[:, 1], v4o1[:, 2], lon, lat, alt) uu_v4o1, vv_v4o1, ww_v4o1 = generate_baseline_uvw(x, y, z, ra, dec, num_times, num_baselines, mjd_start, dt_s) print("- coordinate generation took %.2f s" % (time.time() - t0)) print("- num vis = %i" % uu_v4d.shape[0]) # t0 = time.time() # uv_plot(uu_v4d, vv_v4d, uu_v4o1, vv_v4o1, out_dir) # print('- uv scatter plot took %.2f s' % (time.time() - t0)) # t0 = time.time() # v4d_uv_dist = (uu_v4d**2 + vv_v4d**2)**0.5 # v4d_uv_dist.sort() # v4o1_uv_dist = (uu_v4o1**2 + vv_v4o1**2)**0.5 # v4o1_uv_dist.sort() # hist_plot_1(v4d_uv_dist, v4o1_uv_dist, wave_length, 300.0, out_dir) # hist_plot_1(v4d_uv_dist, v4o1_uv_dist, wave_length * 5.0, 1500.0, out_dir) # hist_plot_1(v4d_uv_dist, v4o1_uv_dist, wave_length, 1500.0, out_dir) # hist_plot_1(v4d_uv_dist, v4o1_uv_dist, wave_length * 10.0, 3000.0, out_dir) # print('- histograms took %.2f s' % (time.time() - t0)) # # hist_plot_2(v4d_uv_dist, v4o1_uv_dist, wave_length, out_dir) # hist_plot_3(v4d_uv_dist, v4o1_uv_dist, wave_length, out_dir) # plot_uv_images(uu_v4d, vv_v4d, uu_v4o1, vv_v4o1, wave_length, station_radius_m, out_dir) make_psf_images(uu_v4d, vv_v4d, ww_v4d, uu_v4o1, vv_v4o1, ww_v4o1, ra, dec, freq, out_dir)
def main(): # Load station positions t0 = time.time() v4d_file = join('v4d.tm', 'layout_enu_stations.txt') v4o1_file = join('v4o1.tm', 'layout_enu_stations.txt') v4d = numpy.loadtxt(v4d_file) v4o1 = numpy.loadtxt(v4o1_file) station_radius_m = 35.0 / 2.0 num_stations = v4d.shape[0] assert(v4o1.shape[0] == v4d.shape[0]) print('- loading coordinates took %.2f s' % (time.time() - t0)) freq = 100.0e6 wave_length = 299792458.0 / freq lon = radians(116.63128900) lat = radians(-26.69702400) alt = 0.0 ra = radians(68.698903779331502) dec = radians(-26.568851215532160) mjd_mid = 57443.4375000000 snapshot = True if snapshot: mjd_start = mjd_mid obs_length = 0.0 dt_s = 0.0 num_times = 1 else: obs_length = 4.0 * 3600.0 # seconds num_times = int(obs_length / (3 * 60.0)) dt_s = obs_length / float(num_times) mjd_start = mjd_mid - (obs_length / 2.0) / (3600.0 * 24.0) print('- obs_length = %.2f s (%.2f h)' % (obs_length, obs_length / 3600.0)) print('- num_times =', num_times) num_baselines = num_stations * (num_stations - 1) / 2 out_dir = 'uv_%3.1fh' % (obs_length / 3600.0) # UV coordinate generation ================================================ t0 = time.time() x, y, z = convert_enu_to_ecef(v4d[:, 0], v4d[:, 1], v4d[:, 2], lon, lat, alt) uu_v4d, vv_v4d, ww_v4d = \ generate_baseline_uvw(x, y, z, ra, dec, num_times, num_baselines, mjd_start, dt_s) x, y, z = convert_enu_to_ecef(v4o1[:, 0], v4o1[:, 1], v4o1[:, 2], lon, lat, alt) uu_v4o1, vv_v4o1, ww_v4o1 = \ generate_baseline_uvw(x, y, z, ra, dec, num_times, num_baselines, mjd_start, dt_s) print('- coordinate generation took %.2f s' % (time.time() - t0)) print('- num vis = %i' % uu_v4d.shape[0]) # Plotting =============================================================== if os.path.exists(out_dir): shutil.rmtree(out_dir) # plot_layouts(v4d, v4o1, station_radius_m, join(out_dir, 'layouts')) # plot_psf(uu_v4d, vv_v4d, ww_v4d, uu_v4o1, vv_v4o1, ww_v4o1, freq, # join(out_dir, 'psf')) # uv_plot(uu_v4d, vv_v4d, uu_v4o1, vv_v4o1, join(out_dir, 'uv_scatter')) plot_uv_hist(uu_v4d, vv_v4d, uu_v4o1, vv_v4o1, wave_length, join(out_dir, 'uv_hist'))
def main(): # Load station positions t0 = time.time() v4d_file = join('v4d.tm', 'layout_enu_stations.txt') v4o1_file = join('v4o1.tm', 'layout_enu_stations.txt') v4d = numpy.loadtxt(v4d_file) v4o1 = numpy.loadtxt(v4o1_file) station_radius_m = 35.0 / 2.0 num_stations = v4d.shape[0] assert(v4o1.shape[0] == v4d.shape[0]) print('- loading coordinates took %.2f s' % (time.time() - t0)) freq = 120.0e6 wave_length = 299792458.0 / freq lon = radians(116.63128900) lat = radians(-26.69702400) alt = 0.0 ra = radians(68.698903779331502) dec = radians(-26.568851215532160) mjd_mid = 57443.4375000000 snapshot = True if snapshot: mjd_start = mjd_mid obs_length = 0.0 dt_s = 0.0 num_times = 1 else: obs_length = 4.0 * 3600.0 # seconds num_times = int(obs_length / (3 * 60.0)) dt_s = obs_length / float(num_times) mjd_start = mjd_mid - (obs_length / 2.0) / (3600.0 * 24.0) print('- obs_length = %.2f s (%.2f h)' % (obs_length, obs_length / 3600.0)) print('- num_times =', num_times) num_baselines = num_stations * (num_stations - 1) / 2 out_dir = 'uv_%3.1fh' % (obs_length / 3600.0) if os.path.exists(out_dir): shutil.rmtree(out_dir) os.makedirs(out_dir) # UV coordinate generation =============================================== t0 = time.time() x, y, z = convert_enu_to_ecef(v4d[:, 0], v4d[:, 1], v4d[:, 2], lon, lat, alt) uu_v4d, vv_v4d, ww_v4d = \ generate_baseline_uvw(x, y, z, ra, dec, num_times, num_baselines, mjd_start, dt_s) print('- Coordinate generation took %.2f s' % (time.time() - t0)) print('- Num vis = %i' % uu_v4d.shape[0]) fov = 180.0 # deg im_size = 8192 n = im_size c = n / 2 z = 128 cell_size_lm_arcsec = fov_to_cell_size(fov, im_size) cell_size_uv = grid_cell_size(cell_size_lm_arcsec, im_size) uv_max = ((im_size / 2) - 5) * cell_size_uv uv_r_cut = uv_max * wave_length uv_r = (uu_v4d**2 + vv_v4d**2)**0.5 uv_sort_idx = numpy.argsort(uv_r) uv_r = uv_r[uv_sort_idx] uu_v4d = uu_v4d[uv_sort_idx] vv_v4d = vv_v4d[uv_sort_idx] ww_v4d = ww_v4d[uv_sort_idx] i_uv_max = numpy.argmax(uv_r >= uv_r_cut) uu_v4d = uu_v4d[:i_uv_max] vv_v4d = vv_v4d[:i_uv_max] ww_v4d = ww_v4d[:i_uv_max] print('- No. uv points after radial cut = %i' % uu_v4d.shape[0]) fig = pyplot.figure(figsize=(8, 8)) ax = fig.add_subplot(111, aspect='equal') ax.plot(uu_v4d, vv_v4d, '.', ms=2.0, alpha=0.2) ax.set_xlim(-uv_max * wave_length, uv_max * wave_length) ax.set_ylim(-uv_max * wave_length, uv_max * wave_length) fig.savefig(join(out_dir, 'uv_scatter.png')) pyplot.close(fig) psf_v4d = make_psf(uu_v4d, vv_v4d, ww_v4d, freq, fov, im_size) lm_max = psf_v4d['lm_max'] lm_inc = psf_v4d['lm_inc'] off = lm_inc / 2.0 extent = [-lm_max - off, lm_max - off, -lm_max - off, lm_max - off] plot_image_log(psf_v4d['image'], extent, fov, join(out_dir, 'psf')) print('- Loading beam image.') prefix = 'b_TIME_AVG_CHAN_AVG_CROSS_POWER' beam_amp = pyfits.getdata(join('beams_180.0_120.0MHz', prefix + '_AMP_I_I.fits')) beam_phase = pyfits.getdata(join('beams_180.0_120.0MHz', prefix + '_PHASE_I_I.fits')) beam_amp = numpy.squeeze(beam_amp) beam_phase = numpy.squeeze(beam_phase) beam_amp[numpy.isnan(beam_amp)] = 0.0 beam_phase[numpy.isnan(beam_phase)] = 0.0 beam = beam_amp * numpy.exp(1.0j * beam_phase) # beam /= numpy.sum(beam) print('- beam sum = %f %f' % (numpy.sum(beam.real), numpy.sum(beam_amp))) beam_amp = beam_amp / numpy.nanmax(beam_amp) plot_image_lin(beam_amp, extent, fov, join(out_dir, 'beam_amp')) plot_image_lin(beam_phase, extent, fov, join(out_dir, 'beam_phase')) plot_image_lin(beam_amp[c - z:c + z, c - z:c + z], [-z - 0.5, z - 0.5, -z + 0.5, z + 0.5], 0, join(out_dir, 'beam_amp_zoom')) plot_image_lin(numpy.real(beam[c - z: c + z, c - z: c + z]), [-z - 0.5, z - 0.5, -z + 0.5, z + 0.5], 0, join(out_dir, 'beam_re_zoom')) plot_image_lin(numpy.imag(beam[c - z: c + z, c - z: c + z]), [-z - 0.5, z - 0.5, -z + 0.5, z + 0.5], 0, join(out_dir, 'beam_im_zoom')) # Beam uv plane response uv_beam = numpy.fft.fftshift(numpy.fft.ifft2(numpy.fft.fftshift(beam))) plot_image_lin(numpy.real(uv_beam), extent, 0, join(out_dir, 'uv_beam_re')) plot_image_lin(numpy.imag(uv_beam), extent, 0, join(out_dir, 'uv_beam_im')) plot_image_lin(numpy.real(uv_beam[c - z: c + z, c - z: c + z]), [-z - 0.5, z - 0.5, -z + 0.5, z + 0.5], 0, join(out_dir, 'uv_beam_re_zoom')) plot_image_lin(numpy.imag(uv_beam[c - z: c + z, c - z: c + z]), [-z - 0.5, z - 0.5, -z + 0.5, z + 0.5], 0, join(out_dir, 'uv_beam_im_zoom')) print('- Beam x PSF.') beam_psf = beam * psf_v4d['image'] plot_image_log(numpy.real(beam_psf), extent, fov, join(out_dir, 'psf_beam_re')) plot_image_log(numpy.imag(beam_psf), extent, fov, join(out_dir, 'psf_beam_im')) print('- UV image (beam convolved).') uv_psf_beam = numpy.fft.fftshift(numpy.fft.ifft2(numpy.fft.fftshift(beam_psf))) plot_image_lin(numpy.real(uv_psf_beam), [-1, 1, -1, 1], 0, join(out_dir, 'uv_psf_beam_re')) plot_image_lin(numpy.imag(uv_psf_beam), [-1, 1, -1, 1], 0, join(out_dir, 'uv_psf_beam_im')) print('- UV image (PSF only).') uv_psf = numpy.fft.fftshift( numpy.fft.ifft2(numpy.fft.fftshift(psf_v4d['image']))) print('- uv_psf grid sum = %f %f' % (numpy.sum(uv_psf.real), numpy.sum(uv_psf.real))) print('- uv_psf_beam grid sum = %f %f' % (numpy.sum(uv_psf_beam.real), numpy.sum(uv_psf_beam.real))) uv_psf /= numpy.sum(uv_psf) uv_psf_beam /= numpy.sum(uv_psf_beam) uv_psf *= uu_v4d.shape[0] uv_psf_beam *= uu_v4d.shape[0] plot_image_lin(numpy.real(uv_psf), [-1, 1, -1, 1], 0, join(out_dir, 'uv_psf_re')) plot_image_lin(numpy.imag(uv_psf), [-1, 1, -1, 1], 0, join(out_dir, 'uv_psf_im')) plot_image_lin(numpy.real(uv_psf[c - z: c + z, c - z: c + z]), [-z - 0.5, z - 0.5, -z + 0.5, z + 0.5], 0, join(out_dir, 'uv_psf_re_zoom')) plot_image_lin(numpy.imag(uv_psf[c - z: c + z, c - z: c + z]), [-z - 0.5, z - 0.5, -z + 0.5, z + 0.5], 0, join(out_dir, 'uv_psf_im_zoom')) plot_image_lin(numpy.real(uv_psf_beam[c - z: c + z, c - z: c + z]), [-z - 0.5, z - 0.5, -z + 0.5, z + 0.5], 0, join(out_dir, 'uv_psf_beam_re_zoom')) plot_image_lin(numpy.imag(uv_psf_beam[c - z: c + z, c - z: c + z]), [-z - 0.5, z - 0.5, -z + 0.5, z + 0.5], 0, join(out_dir, 'uv_psf_beam_im_zoom')) # # Grid uv data to compare with FT(psf) wrt normalisation # uv_grid = numpy.zeros((im_size, im_size)) # for i in range(uu_v4d.shape[0]): # gx = round(uu_v4d[i] / cell_size_uv) + (im_size / 2) # gy = round(vv_v4d[i] / cell_size_uv) + (im_size / 2) # uv_grid[gy, gx] += 1 # print('- uv_grid sum = %f' % numpy.sum(uv_grid)) print('- uv_psf sum = %f' % numpy.sum(uv_psf.real)) plot_uv_image(uu_v4d, vv_v4d, cell_size_uv, 250 * cell_size_uv, station_radius_m, join(out_dir, 'uv_image')) print('- Producing Azimuthal averaged plots') # Azimuthal average and plot vs radius _, _, r = image_coords(im_size, lm_inc) x = r.flatten() sort_idx = numpy.argsort(x) x = x[sort_idx] y1 = numpy.real(uv_psf).flatten() y1 = y1[sort_idx] y2 = numpy.real(uv_psf_beam).flatten() y2 = y2[sort_idx] fig = pyplot.figure(figsize=(8, 8)) ax = fig.add_subplot(111) ax.plot(x, y1, 'b.', ms=3.0, alpha=0.1, label='uv') ax.plot(x, y2, 'r.', ms=3.0, alpha=0.1, label='uv convolved with PB') ax.legend() ax.set_xlim(0, 0.1) fig.savefig(join(out_dir, 'az_uv_r.png')) pyplot.close(fig)
def main(): """ 1. Generate a large-ish core of stations using random generator. a. overlap some stations in the core to have a very dense station region 2. After core area start using arms but generate some randomness in the arms by placing antennas randomly near the outer stations keeping them along the spiral 3. Remove radius redundancy in the spiral arms """ # ========================================================================= # ====== Core seed = 1 num_tries = 10 num_core_stations = (1 + 5 + 11 + 17) * 6 + (3 * 6) core_radius_m = 480.0 inner_core_radius_m = 280.0 station_radius_m = 35.0 / 2.0 sll = -28 # ====== Core arms num_arms = 3 core_arm_count = 4 stations_per_arm_cluster = 6 arm_cluster_radius = 75.0 # a = 300.0 # b = 0.513 a = 300.0 b = 0.513 delta_theta = math.radians(37.0) arm_offsets = numpy.radians([35.0, 155.0, 270.0]) num_core_arm_stations = num_arms * core_arm_count * stations_per_arm_cluster # ====== Outer arms outer_arm_count = 12 stations_per_outer_cluster = 6 num_clusters_outer = outer_arm_count * num_arms v4a_ss_enu_file = 'v7ska1lowN1v2rev3R.enu.94x4.fixed.txt' outer_arm_cluster_radius = 80.0 # ===== uvw coordinate generation. lon = radians(116.63128900) lat = radians(-26.69702400) alt = 0.0 ra = radians(68.698903779331502) dec = radians(-26.568851215532160) mjd_mid = 57443.4375000000 obs_length = 0.0 mjd_start = mjd_mid dt_s = 0.0 num_times = 1 obs_length = 2.0 * 3600.0 # seconds num_times = int(obs_length / (3.0 * 60.0)) dt_s = obs_length / float(num_times) mjd_start = mjd_mid - ((obs_length / 2.0) / 3600.0 * 24.0) print('num times = %i' % num_times) out_dir = 'v5c-2h' # ========================================================================= if not os.path.isdir(out_dir): os.makedirs(out_dir) # Generate core stations x_core, y_core, weights, r_weights = \ generate_random_core(num_core_stations, core_radius_m, inner_core_radius_m, sll, station_radius_m, num_tries, seed) # Core arms x_arm, y_arm, cx_arm, cy_arm = \ generate_core_arms(num_arms, core_arm_count, stations_per_arm_cluster, arm_cluster_radius, station_radius_m, a, b, delta_theta, arm_offsets, num_tries) # Outer stations. x_arm_outer, y_arm_outer, cx_outer, cy_outer = \ generate_outer_arms(v4a_ss_enu_file, num_clusters_outer, stations_per_outer_cluster, outer_arm_cluster_radius, station_radius_m, num_tries) # Plotting plot_layout(x_core, y_core, x_arm, y_arm, x_arm_outer, y_arm_outer, cx_arm, cy_arm, cx_outer, cy_outer, station_radius_m, inner_core_radius_m, core_radius_m, arm_cluster_radius, outer_arm_cluster_radius, out_dir) plot_core_thinning_profile(r_weights, weights, core_radius_m, inner_core_radius_m, out_dir) if uvwsim_found: x = numpy.hstack((x_core, x_arm, x_arm_outer)) y = numpy.hstack((y_core, y_arm, y_arm_outer)) print('total stations = %i' % x.shape[0]) num_stations = x.shape[0] z = numpy.zeros_like(x) num_baselines = num_stations * (num_stations - 1) / 2 x, y, z = convert_enu_to_ecef(x, y, z, lon, lat, alt) uu, vv, ww = generate_baseline_uvw(x, y, z, ra, dec, num_times, num_baselines, mjd_start, dt_s) plot_hist(uu, vv, join(out_dir, 'uv_hist_%.2fh.png' % (obs_length/3600.0)), 'v5c %.2f h' % (obs_length/3600.0)) plot_uv_dist(uu, vv, station_radius_m, join(out_dir, 'uv_%.2fh' % (obs_length/3600.0))) # TODO-BM see ALMA memo for plots? # TODO-BM Plot of azimuthal variation # TODO-BM movie of uv coverage histogram improvement with time? # TODO-BM convolve uv response with station beam?! print('making image...') imager = Imager('single') fov = 1.0 im_size = 2048 freq = 150.0e6 wavelength = 299792458.0 / freq uu /= wavelength vv /= wavelength ww /= wavelength amp = numpy.ones(uu.shape, dtype='c16') weight = numpy.ones(uu.shape, dtype='f8') image = imager.make_image(uu, vv, ww, amp, weight, fov, im_size) fig = pyplot.figure(figsize=(8, 8)) ax = fig.add_subplot(111, aspect='equal') ax.imshow(image, interpolation='nearest') pyplot.show() cell = math.degrees(imager.fov_to_cellsize(math.radians(fov), im_size)) save_fits_image_2(join(out_dir, 'psf.fits'), image, cell, math.degrees(ra), math.degrees(dec), freq)