Esempio n. 1
0
    def test2(self, position5d_start, position5d_stop):
        print "test2"

        roi = SubRegion(self.op.LabelInputs, position5d_start,
                                       position5d_stop)
        key = roi.toSlice()
        #key = tuple(k for k in key if k != slice(0,0, None))
        newKey = []
        for k in key:
            if k.stop < k.start:
                k = slice(k.stop, k.start)
            newKey.append(k)
        newKey = tuple(newKey)
        self.boxes[self.activeBox] = newKey
        #self.op.BoxLabelImages[newKey] = self.activeBox + 2
        #self.op.BoxLabelImages
        labelShape = tuple([position5d_stop[i] + 1 - position5d_start[i] for i in range(5)])
        labels = numpy.ones((labelShape), dtype = numpy.uint8) * (self.activeBox + 3)
        self.boxlabelsrc.put(newKey, labels)
Esempio n. 2
0
 def test(self, position5d_start, position5d_stop):
     print "test"
     roi = SubRegion(self.op.Density, position5d_start,
                                    position5d_stop)
     key = roi.toSlice()
     key = tuple(k for k in key if k != slice(0,0, None))
     newKey = []
     for k in key:
         if k != slice(0,0,None):
             if k.stop < k.start:
                 k = slice(k.stop, k.start)
         newKey.append(k)
     newKey = tuple(newKey)
     try:
         density = numpy.sum(self.op.Density[newKey].wait()) / 255
         strdensity = "{0:.2f}".format(density)
         self._labelControlUi.CountText.setText(strdensity)
     except:
         pass
Esempio n. 3
0
    def test(self, position5d_start, position5d_stop):
        from lazyflow.rtype import SubRegion
        import numpy
        from sitecustomize import debug_trace

        roi = SubRegion(self.op.Density, position5d_start,
                                       position5d_stop)
        key = roi.toSlice()
        key = tuple(k for k in key if k != slice(0,0, None))
        newKey = []
        for k in key:
            if k != slice(0,0,None):
                if k.stop < k.start:
                    k = slice(k.stop, k.start)
            newKey.append(k)
        newKey = tuple(newKey)
        try:
            density = numpy.sum(self.op.Density[newKey].wait())
            self._labelControlUi.CountText.setText(str(density))
        except:
            debug_trace()
    def execute(self, slot, subindex, slot_roi, target):
        assert slot == self.Features or slot == self.Output
        if slot == self.Features:
            feature_slice = roiToSlice(slot_roi.start, slot_roi.stop)
            index = subindex[0]
            feature_slice = list(feature_slice)

            # Translate channel slice of this feature to the channel slice of the output slot.
            output_channel_offset = self.featureOutputChannels[index][0]
            feature_slice[1] = slice(
                output_channel_offset + feature_slice[1].start,
                output_channel_offset + feature_slice[1].stop)
            slot_roi = SubRegion(self.Output, pslice=feature_slice)

            # Get output slot region for this channel
            return self.execute(self.Output, (), slot_roi, target)
        elif slot == self.Output:
            # Correlation of variable 'families' representing reference frames:
            #  ______________________________
            # | input/output frame           |  input/output shape given by slots
            # |  _________________________   |
            # | | smooth frame            |  |  pre-smoothing op needs halo around filter roi
            # | |  ____________________   |  |
            # | | |filter frame        |  |  |  filter needs halo around target roi
            # | | |  _______________   |  |  |
            # | | | | target frame  |  |  |  |  target is given by output_roi

            # note: The 'full_' variable prefix refers to the full 5D shape (tczyx), without 'full_' variables mostly
            #       refer to the 3D space subregion (zyx)

            full_output_slice = slot_roi.toSlice()

            logger.debug(
                f"OpPixelFeaturesPresmoothed: request {slot_roi.pprint()}")

            assert (slot_roi.stop <= self.Output.meta.shape).all()

            full_output_shape = self.Output.meta.shape
            full_output_start, full_output_stop = sliceToRoi(
                full_output_slice, full_output_shape)
            assert len(full_output_shape) == 5
            if all(self.ComputeIn2d.value
                   ):  # todo: check for this particular slice
                axes2enlarge = (0, 1, 1)
            else:
                axes2enlarge = (1, 1, 1)

            output_shape = full_output_shape[2:]
            output_start = full_output_start[2:]
            output_stop = full_output_stop[2:]

            axistags = self.Output.meta.axistags
            target = target.view(vigra.VigraArray)
            target.axistags = copy.copy(axistags)

            # filter roi in input frame
            # sigma = 0.7, because the features receive a pre-smoothed array and don't need much of a neighborhood
            input_filter_start, input_filter_stop = roi.enlargeRoiForHalo(
                output_start,
                output_stop,
                output_shape,
                0.7,
                self.WINDOW_SIZE,
                enlarge_axes=axes2enlarge)

            # smooth roi in input frame
            input_smooth_start, input_smooth_stop = roi.enlargeRoiForHalo(
                input_filter_start,
                input_filter_stop,
                output_shape,
                self.max_sigma,
                self.WINDOW_SIZE,
                enlarge_axes=axes2enlarge,
            )

            # target roi in filter frame
            filter_target_start = roi.TinyVector(output_start -
                                                 input_filter_start)
            filter_target_stop = roi.TinyVector(output_stop -
                                                input_filter_start)

            # filter roi in smooth frame
            smooth_filter_start = roi.TinyVector(input_filter_start -
                                                 input_smooth_start)
            smooth_filter_stop = roi.TinyVector(input_filter_stop -
                                                input_smooth_start)

            filter_target_slice = roi.roiToSlice(filter_target_start,
                                                 filter_target_stop)
            input_smooth_slice = roi.roiToSlice(input_smooth_start,
                                                input_smooth_stop)

            # pre-smooth for all requested time slices and all channels
            full_input_smooth_slice = (full_output_slice[0], slice(None),
                                       *input_smooth_slice)
            req = self.Input[full_input_smooth_slice]
            source = req.wait()
            req.clean()
            req.destination = None
            if source.dtype != numpy.float32:
                sourceF = source.astype(numpy.float32)
                try:
                    source.resize((1, ), refcheck=False)
                except Exception:
                    pass
                del source
                source = sourceF

            sourceV = source.view(vigra.VigraArray)
            sourceV.axistags = copy.copy(self.Input.meta.axistags)

            dimCol = len(self.scales)
            dimRow = self.matrix.shape[0]

            presmoothed_source = [None] * dimCol

            source_smooth_shape = tuple(smooth_filter_stop -
                                        smooth_filter_start)
            full_source_smooth_shape = (
                full_output_stop[0] - full_output_start[0],
                self.Input.meta.shape[1],
            ) + source_smooth_shape
            try:
                for j in range(dimCol):
                    for i in range(dimRow):
                        if self.matrix[i, j]:
                            # There is at least one filter op with this scale
                            break
                    else:
                        # There is no filter op at this scale
                        continue

                    if self.scales[j] > 1.0:
                        tempSigma = math.sqrt(self.scales[j]**2 - 1.0)
                    else:
                        tempSigma = self.scales[j]

                    presmoothed_source[j] = numpy.ndarray(
                        full_source_smooth_shape, numpy.float32)

                    droi = (
                        (0, *tuple(smooth_filter_start._asint())),
                        (sourceV.shape[1],
                         *tuple(smooth_filter_stop._asint())),
                    )
                    for i, vsa in enumerate(sourceV.timeIter()):
                        presmoothed_source[j][
                            i, ...] = self._computeGaussianSmoothing(
                                vsa,
                                tempSigma,
                                droi,
                                in2d=self.ComputeIn2d.value[j])

            except RuntimeError as e:
                if "kernel longer than line" in str(e):
                    raise RuntimeError(
                        "Feature computation error:\nYour image is too small to apply a filter with "
                        f"sigma={self.scales[j]:.1f}. Please select features with smaller sigmas."
                    )
                else:
                    raise e

            del sourceV
            try:
                source.resize((1, ), refcheck=False)
            except ValueError:
                # Sometimes this fails, but that's okay.
                logger.debug("Failed to free array memory.")
            del source

            cnt = 0
            written = 0
            closures = []
            # connect individual operators
            for i in range(dimRow):
                for j in range(dimCol):
                    if self.matrix[i, j]:
                        oslot = self.featureOps[i][j].Output
                        req = None
                        slices = oslot.meta.shape[1]
                        if (cnt + slices >= slot_roi.start[1]
                                and slot_roi.start[1] - cnt < slices
                                and slot_roi.start[1] + written <
                                slot_roi.stop[1]):
                            begin = 0
                            if cnt < slot_roi.start[1]:
                                begin = slot_roi.start[1] - cnt
                            end = slices
                            if cnt + end > slot_roi.stop[1]:
                                end = slot_roi.stop[1] - cnt

                            # feature slice in output frame
                            feature_slice = (slice(None),
                                             slice(
                                                 written, written + end -
                                                 begin)) + (slice(None), ) * 3

                            subtarget = target[feature_slice]
                            # readjust the roi for the new source array
                            full_filter_target_slice = [
                                full_output_slice[0],
                                slice(begin, end), *filter_target_slice
                            ]
                            filter_target_roi = SubRegion(
                                oslot, pslice=full_filter_target_slice)

                            closure = partial(
                                oslot.operator.execute,
                                oslot,
                                (),
                                filter_target_roi,
                                subtarget,
                                sourceArray=presmoothed_source[j],
                            )
                            closures.append(closure)

                            written += end - begin
                        cnt += slices
            pool = RequestPool()
            for c in closures:
                pool.request(c)
            pool.wait()
            pool.clean()

            for i in range(len(presmoothed_source)):
                if presmoothed_source[i] is not None:
                    try:
                        presmoothed_source[i].resize((1, ))
                    except Exception:
                        presmoothed_source[i] = None
Esempio n. 5
0
    def execute(self, slot, subindex, roi, result):
        if slot == self.Dirty:
            assert False # Shouldn't get to this line because the dirty output is given a value directly
        
        if slot == self.OutputDataPath:
            assert False # This slot is already set via setupOutputs

        if slot == self.ExportResult:
            # We can stop now if the output isn't dirty
            if not self.Dirty.value:
                result[0] = True
                return
            
            exportFormat = self.Format.value
            
            # Export H5
            if exportFormat == ExportFormat.H5:
                pathComp = PathComponents(self.OutputDataPath.value)

                # Ensure the directory exists
                if not os.path.exists(pathComp.externalDirectory):
                    with self._createDirLock:
                        # Check again now that we have the lock.
                        if not os.path.exists(pathComp.externalDirectory):
                            os.makedirs(pathComp.externalDirectory)

                # Open the file
                try:
                    hdf5File = h5py.File(pathComp.externalPath)
                except:
                    logger.error("Unable to open hdf5File: " + pathComp.externalPath)
                    logger.error( traceback.format_exc() )
                    result[0] = False
                    return
                
                # Set up the write operator
                opH5Writer = OpH5WriterBigDataset(parent=self)
                opH5Writer.hdf5File.setValue( hdf5File )
                opH5Writer.hdf5Path.setValue( pathComp.internalPath )
                #opH5Writer.Image.connect( self.ImageToExport )
                opH5Writer.Image.connect(self.ImageCache.Output)

                print "computing predictions for the selected slices:"
                self.ImageCache.fixAtCurrent.setValue(False)
                #check readiness
                for inp in self.ImageCache.inputs:
                    print inp, self.ImageCache.inputs[inp].ready()
                
                print "input shape:", self.ImageCache.Input.meta.shape
                print "output shape:", self.ImageCache.Output.meta.shape
                
                selectedSlices = self.SelectedSlices.value
                zaxis = self.ImageToExport.meta.axistags.index('z')
                for isl, sl in enumerate(selectedSlices):
                    print "computing for slice ...", isl
                    start = [0]*len(self.ImageToExport.meta.shape)
                    start[zaxis]=sl
                    stop = list(self.ImageToExport.meta.shape)
                    stop[zaxis]=sl+1
                    roi = SubRegion(self.ImageCache, start=start, stop=stop)
                    print roi
                    temp = self.ImageCache.Output[roi.toSlice()].wait()
                    #print temp
                    
                self.ImageCache.fixAtCurrent.setValue(True)
                #tstart = [0]*len(self.ImageToExport.meta.shape)
                #tstop = list(self.ImageToExport.meta.shape)
                #troi = SubRegion(self.ImageCache, start=tstart, stop=tstop)
                #tttemp = self.ImageCache.Output[troi.toSlice()].wait()
                #print tttemp
                
                # The H5 Writer provides it's own progress signal, so just connect ours to it.
                opH5Writer.progressSignal.subscribe( self.progressSignal )

                # Trigger the write
                self.Dirty.setValue( not opH5Writer.WriteImage.value )
                
                hdf5File.close()

                opH5Writer.cleanUp()

#            elif exportFormat == ExportFormat.Npy:
#                assert False # TODO
#            elif exportFormat == ExportFormat.Npy:
#                assert False # TODO
            else:
                assert False, "Unknown export format"

            result[0] = not self.Dirty.value
    def execute(self, slot, subindex, slot_roi, target):
        assert slot == self.Features or slot == self.Output
        if slot == self.Features:
            feature_slice = roiToSlice(slot_roi.start, slot_roi.stop)
            index = subindex[0]
            feature_slice = list(feature_slice)

            # Translate channel slice of this feature to the channel slice of the output slot.
            output_channel_offset = self.featureOutputChannels[index][0]
            feature_slice[1] = slice(
                output_channel_offset + feature_slice[1].start, output_channel_offset + feature_slice[1].stop
            )
            slot_roi = SubRegion(self.Output, pslice=feature_slice)

            # Get output slot region for this channel
            return self.execute(self.Output, (), slot_roi, target)
        elif slot == self.Output:
            # Correlation of variable 'families' representing reference frames:
            #  ______________________________
            # | input/output frame           |  input/output shape given by slots
            # |  _________________________   |
            # | | smooth frame            |  |  pre-smoothing op needs halo around filter roi
            # | |  ____________________   |  |
            # | | |filter frame        |  |  |  filter needs halo around target roi
            # | | |  _______________   |  |  |
            # | | | | target frame  |  |  |  |  target is given by output_roi

            # note: The 'full_' variable prefix refers to the full 5D shape (tczyx), without 'full_' variables mostly
            #       refer to the 3D space subregion (zyx)

            full_output_slice = slot_roi.toSlice()

            logger.debug(f"OpPixelFeaturesPresmoothed: request {slot_roi.pprint()}")

            assert (slot_roi.stop <= self.Output.meta.shape).all()

            full_output_shape = self.Output.meta.shape
            full_output_start, full_output_stop = sliceToRoi(full_output_slice, full_output_shape)
            assert len(full_output_shape) == 5
            if all(self.ComputeIn2d.value):  # todo: check for this particular slice
                axes2enlarge = (0, 1, 1)
            else:
                axes2enlarge = (1, 1, 1)

            output_shape = full_output_shape[2:]
            output_start = full_output_start[2:]
            output_stop = full_output_stop[2:]

            axistags = self.Output.meta.axistags
            target = target.view(vigra.VigraArray)
            target.axistags = copy.copy(axistags)

            # filter roi in input frame
            # sigma = 0.7, because the features receive a pre-smoothed array and don't need much of a neighborhood
            input_filter_start, input_filter_stop = roi.enlargeRoiForHalo(
                output_start, output_stop, output_shape, 0.7, self.WINDOW_SIZE, enlarge_axes=axes2enlarge
            )

            # smooth roi in input frame
            input_smooth_start, input_smooth_stop = roi.enlargeRoiForHalo(
                input_filter_start,
                input_filter_stop,
                output_shape,
                self.max_sigma,
                self.WINDOW_SIZE,
                enlarge_axes=axes2enlarge,
            )

            # target roi in filter frame
            filter_target_start = roi.TinyVector(output_start - input_filter_start)
            filter_target_stop = roi.TinyVector(output_stop - input_filter_start)

            # filter roi in smooth frame
            smooth_filter_start = roi.TinyVector(input_filter_start - input_smooth_start)
            smooth_filter_stop = roi.TinyVector(input_filter_stop - input_smooth_start)

            filter_target_slice = roi.roiToSlice(filter_target_start, filter_target_stop)
            input_smooth_slice = roi.roiToSlice(input_smooth_start, input_smooth_stop)

            # pre-smooth for all requested time slices and all channels
            full_input_smooth_slice = (full_output_slice[0], slice(None), *input_smooth_slice)
            req = self.Input[full_input_smooth_slice]
            source = req.wait()
            req.clean()
            req.destination = None
            if source.dtype != numpy.float32:
                sourceF = source.astype(numpy.float32)
                try:
                    source.resize((1,), refcheck=False)
                except Exception:
                    pass
                del source
                source = sourceF

            sourceV = source.view(vigra.VigraArray)
            sourceV.axistags = copy.copy(self.Input.meta.axistags)

            dimCol = len(self.scales)
            dimRow = self.matrix.shape[0]

            presmoothed_source = [None] * dimCol

            source_smooth_shape = tuple(smooth_filter_stop - smooth_filter_start)
            full_source_smooth_shape = (
                full_output_stop[0] - full_output_start[0],
                self.Input.meta.shape[1],
            ) + source_smooth_shape
            try:
                for j in range(dimCol):
                    for i in range(dimRow):
                        if self.matrix[i, j]:
                            # There is at least one filter op with this scale
                            break
                    else:
                        # There is no filter op at this scale
                        continue

                    if self.scales[j] > 1.0:
                        tempSigma = math.sqrt(self.scales[j] ** 2 - 1.0)
                    else:
                        tempSigma = self.scales[j]

                    presmoothed_source[j] = numpy.ndarray(full_source_smooth_shape, numpy.float32)

                    droi = (
                        (0, *tuple(smooth_filter_start._asint())),
                        (sourceV.shape[1], *tuple(smooth_filter_stop._asint())),
                    )
                    for i, vsa in enumerate(sourceV.timeIter()):
                        presmoothed_source[j][i, ...] = self._computeGaussianSmoothing(
                            vsa, tempSigma, droi, in2d=self.ComputeIn2d.value[j]
                        )

            except RuntimeError as e:
                if "kernel longer than line" in str(e):
                    raise RuntimeError(
                        "Feature computation error:\nYour image is too small to apply a filter with "
                        f"sigma={self.scales[j]:.1f}. Please select features with smaller sigmas."
                    )
                else:
                    raise e

            del sourceV
            try:
                source.resize((1,), refcheck=False)
            except ValueError:
                # Sometimes this fails, but that's okay.
                logger.debug("Failed to free array memory.")
            del source

            cnt = 0
            written = 0
            closures = []
            # connect individual operators
            for i in range(dimRow):
                for j in range(dimCol):
                    if self.matrix[i, j]:
                        oslot = self.featureOps[i][j].Output
                        req = None
                        slices = oslot.meta.shape[1]
                        if (
                            cnt + slices >= slot_roi.start[1]
                            and slot_roi.start[1] - cnt < slices
                            and slot_roi.start[1] + written < slot_roi.stop[1]
                        ):
                            begin = 0
                            if cnt < slot_roi.start[1]:
                                begin = slot_roi.start[1] - cnt
                            end = slices
                            if cnt + end > slot_roi.stop[1]:
                                end = slot_roi.stop[1] - cnt

                            # feature slice in output frame
                            feature_slice = (slice(None), slice(written, written + end - begin)) + (slice(None),) * 3

                            subtarget = target[feature_slice]
                            # readjust the roi for the new source array
                            full_filter_target_slice = [full_output_slice[0], slice(begin, end), *filter_target_slice]
                            filter_target_roi = SubRegion(oslot, pslice=full_filter_target_slice)

                            closure = partial(
                                oslot.operator.execute,
                                oslot,
                                (),
                                filter_target_roi,
                                subtarget,
                                sourceArray=presmoothed_source[j],
                            )
                            closures.append(closure)

                            written += end - begin
                        cnt += slices
            pool = RequestPool()
            for c in closures:
                pool.request(c)
            pool.wait()
            pool.clean()

            for i in range(len(presmoothed_source)):
                if presmoothed_source[i] is not None:
                    try:
                        presmoothed_source[i].resize((1,))
                    except Exception:
                        presmoothed_source[i] = None
Esempio n. 7
0
    def execute(self, slot, subindex, roi, result):
        if slot == self.Dirty:
            assert False  # Shouldn't get to this line because the dirty output is given a value directly

        if slot == self.OutputDataPath:
            assert False  # This slot is already set via setupOutputs

        if slot == self.ExportResult:
            # We can stop now if the output isn't dirty
            if not self.Dirty.value:
                result[0] = True
                return

            exportFormat = self.Format.value

            # Export H5
            if exportFormat == ExportFormat.H5:
                pathComp = PathComponents(self.OutputDataPath.value)

                # Ensure the directory exists
                if not os.path.exists(pathComp.externalDirectory):
                    with self._createDirLock:
                        # Check again now that we have the lock.
                        if not os.path.exists(pathComp.externalDirectory):
                            os.makedirs(pathComp.externalDirectory)

                # Open the file
                try:
                    hdf5File = h5py.File(pathComp.externalPath)
                except:
                    logger.error("Unable to open hdf5File: " +
                                 pathComp.externalPath)
                    logger.error(traceback.format_exc())
                    result[0] = False
                    return

                # Set up the write operator
                opH5Writer = OpH5WriterBigDataset(parent=self)
                opH5Writer.hdf5File.setValue(hdf5File)
                opH5Writer.hdf5Path.setValue(pathComp.internalPath)
                #opH5Writer.Image.connect( self.ImageToExport )
                opH5Writer.Image.connect(self.ImageCache.Output)

                print "computing predictions for the selected slices:"
                self.ImageCache.fixAtCurrent.setValue(False)
                #check readiness
                for inp in self.ImageCache.inputs:
                    print inp, self.ImageCache.inputs[inp].ready()

                print "input shape:", self.ImageCache.Input.meta.shape
                print "output shape:", self.ImageCache.Output.meta.shape

                selectedSlices = self.SelectedSlices.value
                zaxis = self.ImageToExport.meta.axistags.index('z')
                for isl, sl in enumerate(selectedSlices):
                    print "computing for slice ...", isl
                    start = [0] * len(self.ImageToExport.meta.shape)
                    start[zaxis] = sl
                    stop = list(self.ImageToExport.meta.shape)
                    stop[zaxis] = sl + 1
                    roi = SubRegion(self.ImageCache, start=start, stop=stop)
                    print roi
                    temp = self.ImageCache.Output[roi.toSlice()].wait()
                    #print temp

                self.ImageCache.fixAtCurrent.setValue(True)
                #tstart = [0]*len(self.ImageToExport.meta.shape)
                #tstop = list(self.ImageToExport.meta.shape)
                #troi = SubRegion(self.ImageCache, start=tstart, stop=tstop)
                #tttemp = self.ImageCache.Output[troi.toSlice()].wait()
                #print tttemp

                # The H5 Writer provides it's own progress signal, so just connect ours to it.
                opH5Writer.progressSignal.subscribe(self.progressSignal)

                # Trigger the write
                self.Dirty.setValue(not opH5Writer.WriteImage.value)

                hdf5File.close()

                opH5Writer.cleanUp()

#            elif exportFormat == ExportFormat.Npy:
#                assert False # TODO
#            elif exportFormat == ExportFormat.Npy:
#                assert False # TODO
            else:
                assert False, "Unknown export format"

            result[0] = not self.Dirty.value
Esempio n. 8
0
    def execute(self, slot, subindex, rroi, result):
        assert slot == self.Features or slot == self.Output
        if slot == self.Features:
            key = roiToSlice(rroi.start, rroi.stop)
            index = subindex[0]
            subslot = self.Features[index]
            key = list(key)
            channelIndex = self.Input.meta.axistags.index('c')
            
            # Translate channel slice to the correct location for the output slot.
            key[channelIndex] = slice(self.featureOutputChannels[index][0] + key[channelIndex].start,
                                      self.featureOutputChannels[index][0] + key[channelIndex].stop)
            rroi = SubRegion(subslot, pslice=key)
    
            # Get output slot region for this channel
            return self.execute(self.Output, (), rroi, result)
        elif slot == self.outputs["Output"]:
            key = rroi.toSlice()
            cnt = 0
            written = 0
            assert (rroi.stop<=self.outputs["Output"].meta.shape).all()
            flag = 'c'
            channelAxis=self.inputs["Input"].meta.axistags.index('c')
            axisindex = channelAxis
            oldkey = list(key)
            oldkey.pop(axisindex)


            inShape  = self.inputs["Input"].meta.shape

            shape = self.outputs["Output"].meta.shape

            axistags = self.inputs["Input"].meta.axistags

            result = result.view(vigra.VigraArray)
            result.axistags = copy.copy(axistags)


            hasTimeAxis = self.inputs["Input"].meta.axistags.axisTypeCount(vigra.AxisType.Time)
            timeAxis=self.inputs["Input"].meta.axistags.index('t')

            subkey = popFlagsFromTheKey(key,axistags,'c')
            subshape=popFlagsFromTheKey(shape,axistags,'c')
            at2 = copy.copy(axistags)
            at2.dropChannelAxis()
            subshape=popFlagsFromTheKey(subshape,at2,'t')
            subkey = popFlagsFromTheKey(subkey,at2,'t')

            oldstart, oldstop = roi.sliceToRoi(key, shape)

            start, stop = roi.sliceToRoi(subkey,subkey)
            maxSigma = max(0.7,self.maxSigma)

            # The region of the smoothed image we need to give to the feature filter (in terms of INPUT coordinates)
            vigOpSourceStart, vigOpSourceStop = roi.extendSlice(start, stop, subshape, 0.7, window = 2)
            
            # The region of the input that we need to give to the smoothing operator (in terms of INPUT coordinates)
            newStart, newStop = roi.extendSlice(vigOpSourceStart, vigOpSourceStop, subshape, maxSigma, window = 3.5)

            # Translate coordinates (now in terms of smoothed image coordinates)
            vigOpSourceStart = roi.TinyVector(vigOpSourceStart - newStart)
            vigOpSourceStop = roi.TinyVector(vigOpSourceStop - newStart)

            readKey = roi.roiToSlice(newStart, newStop)


            writeNewStart = start - newStart
            writeNewStop = writeNewStart +  stop - start


            treadKey=list(readKey)

            if hasTimeAxis:
                if timeAxis < channelAxis:
                    treadKey.insert(timeAxis, key[timeAxis])
                else:
                    treadKey.insert(timeAxis-1, key[timeAxis])
            if  self.inputs["Input"].meta.axistags.axisTypeCount(vigra.AxisType.Channels) == 0:
                treadKey =  popFlagsFromTheKey(treadKey,axistags,'c')
            else:
                treadKey.insert(channelAxis, slice(None,None,None))

            treadKey=tuple(treadKey)

            req = self.inputs["Input"][treadKey].allocate()

            sourceArray = req.wait()
            req.result = None
            req.destination = None
            if sourceArray.dtype != numpy.float32:
                sourceArrayF = sourceArray.astype(numpy.float32)
                sourceArray.resize((1,), refcheck = False)
                del sourceArray
                sourceArray = sourceArrayF
            sourceArrayV = sourceArray.view(vigra.VigraArray)
            sourceArrayV.axistags =  copy.copy(axistags)





            dimCol = len(self.scales)
            dimRow = self.matrix.shape[0]


            sourceArraysForSigmas = [None]*dimCol

            #connect individual operators
            for j in range(dimCol):
                hasScale = False
                for i in range(dimRow):
                    if self.matrix[i,j]:
                        hasScale = True
                if not hasScale:
                    continue
                destSigma = 1.0
                if self.scales[j] > destSigma:
                    tempSigma = math.sqrt(self.scales[j]**2 - destSigma**2)
                else:
                    destSigma = 0.0
                    tempSigma = self.scales[j]
                vigOpSourceShape = list(vigOpSourceStop - vigOpSourceStart)
                if hasTimeAxis:

                    if timeAxis < channelAxis:
                        vigOpSourceShape.insert(timeAxis, ( oldstop - oldstart)[timeAxis])
                    else:
                        vigOpSourceShape.insert(timeAxis-1, ( oldstop - oldstart)[timeAxis])
                    vigOpSourceShape.insert(channelAxis, inShape[channelAxis])

                    sourceArraysForSigmas[j] = numpy.ndarray(tuple(vigOpSourceShape),numpy.float32)
                    for i,vsa in enumerate(sourceArrayV.timeIter()):
                        droi = (tuple(vigOpSourceStart._asint()), tuple(vigOpSourceStop._asint()))
                        tmp_key = getAllExceptAxis(len(sourceArraysForSigmas[j].shape),timeAxis, i)
                        sourceArraysForSigmas[j][tmp_key] = vigra.filters.gaussianSmoothing(vsa,tempSigma, roi = droi, window_size = 3.5 )
                else:
                    droi = (tuple(vigOpSourceStart._asint()), tuple(vigOpSourceStop._asint()))
                    #print droi, sourceArray.shape, tempSigma,self.scales[j]
                    sourceArraysForSigmas[j] = vigra.filters.gaussianSmoothing(sourceArrayV, sigma = tempSigma, roi = droi, window_size = 3.5)
                    #sourceArrayForSigma = sourceArrayForSigma.view(numpy.ndarray)

            del sourceArrayV
            try:
                sourceArray.resize((1,), refcheck = False)
            except ValueError:
                # Sometimes this fails, but that's okay.
                logger.debug("Failed to free array memory.")                
            del sourceArray

            
            closures = []

            #connect individual operators
            for i in range(dimRow):
                for j in range(dimCol):
                    val=self.matrix[i,j]
                    if val:
                        vop= self.featureOps[i][j]
                        oslot = vop.outputs["Output"]
                        req = None
                        inTagKeys = [ax.key for ax in oslot.meta.axistags]
                        if flag in inTagKeys:
                            slices = oslot.meta.shape[axisindex]
                            if cnt + slices >= rroi.start[axisindex] and rroi.start[axisindex]-cnt<slices and rroi.start[axisindex]+written<rroi.stop[axisindex]:
                                begin = 0
                                if cnt < rroi.start[axisindex]:
                                    begin = rroi.start[axisindex] - cnt
                                end = slices
                                if cnt + end > rroi.stop[axisindex]:
                                    end -= cnt + end - rroi.stop[axisindex]
                                key_ = copy.copy(oldkey)
                                key_.insert(axisindex, slice(begin, end, None))
                                reskey = [slice(None, None, None) for x in range(len(result.shape))]
                                reskey[axisindex] = slice(written, written+end-begin, None)

                                destArea = result[tuple(reskey)]
                                roi_ = SubRegion(self.Input, pslice=key_)                                
                                closure = partial(oslot.operator.execute, oslot, (), roi_, destArea, sourceArray = sourceArraysForSigmas[j])
                                closures.append(closure)

                                written += end - begin
                            cnt += slices
                        else:
                            if cnt>=rroi.start[axisindex] and rroi.start[axisindex] + written < rroi.stop[axisindex]:
                                reskey = copy.copy(oldkey)
                                reskey.insert(axisindex, written)
                                #print "key: ", key, "reskey: ", reskey, "oldkey: ", oldkey
                                #print "result: ", result.shape, "inslot:", inSlot.shape

                                destArea = result[tuple(reskey)]
                                logger.debug(oldkey, destArea.shape, sourceArraysForSigmas[j].shape)
                                oldroi = SubRegion(self.Input, pslice=oldkey)
                                closure = partial(oslot.operator.execute, oslot, (), oldroi, destArea, sourceArray = sourceArraysForSigmas[j])
                                closures.append(closure)

                                written += 1
                            cnt += 1
            pool = Pool()
            for c in closures:
                r = pool.request(c)
            pool.wait()
            pool.clean()

            for i in range(len(sourceArraysForSigmas)):
                if sourceArraysForSigmas[i] is not None:
                    try:
                        sourceArraysForSigmas[i].resize((1,))
                    except:
                        sourceArraysForSigmas[i] = None
Esempio n. 9
0
    def execute(self, slot, subindex, rroi, result):
        assert slot == self.Features or slot == self.Output
        if slot == self.Features:
            key = roiToSlice(rroi.start, rroi.stop)
            index = subindex[0]
            key = list(key)
            channelIndex = self.Input.meta.axistags.index('c')
            
            # Translate channel slice to the correct location for the output slot.
            key[channelIndex] = slice(self.featureOutputChannels[index][0] + key[channelIndex].start,
                                      self.featureOutputChannels[index][0] + key[channelIndex].stop)
            rroi = SubRegion(self.Output, pslice=key)

            # Get output slot region for this channel
            return self.execute(self.Output, (), rroi, result)
        elif slot == self.outputs["Output"]:
            key = rroi.toSlice()
            
            logger.debug("OpPixelFeaturesPresmoothed: request %s" % (rroi.pprint(),))
            
            cnt = 0
            written = 0
            assert (rroi.stop<=self.outputs["Output"].meta.shape).all()
            flag = 'c'
            channelAxis=self.inputs["Input"].meta.axistags.index('c')
            axisindex = channelAxis
            oldkey = list(key)
            oldkey.pop(axisindex)


            inShape  = self.inputs["Input"].meta.shape
            hasChannelAxis = (self.Input.meta.axistags.axisTypeCount(vigra.AxisType.Channels) > 0)
            #if (self.Input.meta.axistags.axisTypeCount(vigra.AxisType.Channels) == 0):
            #    noChannels = True
            inAxistags = self.inputs["Input"].meta.axistags
                
            shape = self.outputs["Output"].meta.shape
            axistags = self.outputs["Output"].meta.axistags

            result = result.view(vigra.VigraArray)
            result.axistags = copy.copy(axistags)


            hasTimeAxis = self.inputs["Input"].meta.axistags.axisTypeCount(vigra.AxisType.Time)
            timeAxis=self.inputs["Input"].meta.axistags.index('t')

            subkey = popFlagsFromTheKey(key,axistags,'c')
            subshape=popFlagsFromTheKey(shape,axistags,'c')
            at2 = copy.copy(axistags)
            at2.dropChannelAxis()
            subshape=popFlagsFromTheKey(subshape,at2,'t')
            subkey = popFlagsFromTheKey(subkey,at2,'t')

            oldstart, oldstop = roi.sliceToRoi(key, shape)

            start, stop = roi.sliceToRoi(subkey,subkey)
            maxSigma = max(0.7,self.maxSigma)  #we use 0.7 as an approximation of not doing any smoothing
            #smoothing was already applied previously
            
            # The region of the smoothed image we need to give to the feature filter (in terms of INPUT coordinates)
            # 0.7, because the features receive a pre-smoothed array and don't need much of a neighborhood 
            vigOpSourceStart, vigOpSourceStop = roi.enlargeRoiForHalo(start, stop, subshape, 0.7, self.WINDOW_SIZE)
            
            
            # The region of the input that we need to give to the smoothing operator (in terms of INPUT coordinates)
            newStart, newStop = roi.enlargeRoiForHalo(vigOpSourceStart, vigOpSourceStop, subshape, maxSigma, self.WINDOW_SIZE)
            
            newStartSmoother = roi.TinyVector(start - vigOpSourceStart)
            newStopSmoother = roi.TinyVector(stop - vigOpSourceStart)
            roiSmoother = roi.roiToSlice(newStartSmoother, newStopSmoother)

            # Translate coordinates (now in terms of smoothed image coordinates)
            vigOpSourceStart = roi.TinyVector(vigOpSourceStart - newStart)
            vigOpSourceStop = roi.TinyVector(vigOpSourceStop - newStart)

            readKey = roi.roiToSlice(newStart, newStop)

            writeNewStart = start - newStart
            writeNewStop = writeNewStart +  stop - start

            treadKey=list(readKey)

            if hasTimeAxis:
                if timeAxis < channelAxis:
                    treadKey.insert(timeAxis, key[timeAxis])
                else:
                    treadKey.insert(timeAxis-1, key[timeAxis])
            if  self.inputs["Input"].meta.axistags.axisTypeCount(vigra.AxisType.Channels) == 0:
                treadKey =  popFlagsFromTheKey(treadKey,axistags,'c')
            else:
                treadKey.insert(channelAxis, slice(None,None,None))

            treadKey=tuple(treadKey)

            req = self.inputs["Input"][treadKey]
            
            sourceArray = req.wait()
            req.clean()
            #req.result = None
            req.destination = None
            if sourceArray.dtype != numpy.float32:
                sourceArrayF = sourceArray.astype(numpy.float32)
                try:
                    sourceArray.resize((1,), refcheck = False)
                except:
                    pass
                del sourceArray
                sourceArray = sourceArrayF
                
            #if (self.Input.meta.axistags.axisTypeCount(vigra.AxisType.Channels) == 0):
                #add a channel dimension to make the code afterwards more uniform
            #    sourceArray = sourceArray.view(numpy.ndarray)
            #    sourceArray = sourceArray.reshape(sourceArray.shape+(1,))
            sourceArrayV = sourceArray.view(vigra.VigraArray)
            sourceArrayV.axistags =  copy.copy(inAxistags)
            
            dimCol = len(self.scales)
            dimRow = self.matrix.shape[0]

            sourceArraysForSigmas = [None]*dimCol

            #connect individual operators
            try:
                for j in range(dimCol):
                    hasScale = False
                    for i in range(dimRow):
                        if self.matrix[i,j]:
                            hasScale = True
                    if not hasScale:
                        continue
                    destSigma = 1.0
                    if self.scales[j] > destSigma:
                        tempSigma = math.sqrt(self.scales[j]**2 - destSigma**2)
                    else:
                        destSigma = 0.0
                        tempSigma = self.scales[j]
                    vigOpSourceShape = list(vigOpSourceStop - vigOpSourceStart)
                                        
                    if hasTimeAxis:
                        if timeAxis < channelAxis:
                            vigOpSourceShape.insert(timeAxis, ( oldstop - oldstart)[timeAxis])
                        else:
                            vigOpSourceShape.insert(timeAxis-1, ( oldstop - oldstart)[timeAxis])
                        vigOpSourceShape.insert(channelAxis, inShape[channelAxis])
    
                        sourceArraysForSigmas[j] = numpy.ndarray(tuple(vigOpSourceShape),numpy.float32)
                        
                        for i,vsa in enumerate(sourceArrayV.timeIter()):
                            droi = (tuple(vigOpSourceStart._asint()), tuple(vigOpSourceStop._asint()))
                            tmp_key = getAllExceptAxis(len(sourceArraysForSigmas[j].shape),timeAxis, i) 
                            sourceArraysForSigmas[j][tmp_key] = self._computeGaussianSmoothing(vsa, tempSigma, droi)

                    else:
                        droi = (tuple(vigOpSourceStart._asint()), tuple(vigOpSourceStop._asint()))                            
                        sourceArraysForSigmas[j] = self._computeGaussianSmoothing(sourceArrayV, tempSigma, droi)
            
            except RuntimeError as e:
                if e.message.find('kernel longer than line') > -1:
                    message = "Feature computation error:\nYour image is too small to apply a filter with sigma=%.1f. Please select features with smaller sigmas." % self.scales[j]
                    raise RuntimeError(message)
                else:
                    raise e

            del sourceArrayV
            try:
                sourceArray.resize((1,), refcheck = False)
            except ValueError:
                # Sometimes this fails, but that's okay.
                logger.debug("Failed to free array memory.")                
            del sourceArray

            closures = []

            #connect individual operators
            for i in range(dimRow):
                for j in range(dimCol):
                    val=self.matrix[i,j]
                    if val:
                        vop= self.featureOps[i][j]
                        oslot = vop.outputs["Output"]
                        req = None
                        #inTagKeys = [ax.key for ax in oslot.meta.axistags]
                        #print inTagKeys, flag
                        if hasChannelAxis:
                            slices = oslot.meta.shape[axisindex]
                            if cnt + slices >= rroi.start[axisindex] and rroi.start[axisindex]-cnt<slices and rroi.start[axisindex]+written<rroi.stop[axisindex]:
                                begin = 0
                                if cnt < rroi.start[axisindex]:
                                    begin = rroi.start[axisindex] - cnt
                                end = slices
                                if cnt + end > rroi.stop[axisindex]:
                                    end -= cnt + end - rroi.stop[axisindex]
                                key_ = copy.copy(oldkey)
                                key_.insert(axisindex, slice(begin, end, None))
                                reskey = [slice(None, None, None) for x in range(len(result.shape))]
                                reskey[axisindex] = slice(written, written+end-begin, None)
                                
                                destArea = result[tuple(reskey)]
                                #readjust the roi for the new source array
                                roiSmootherList = list(roiSmoother)
                                
                                roiSmootherList.insert(axisindex, slice(begin, end, None))
                                
                                if hasTimeAxis:
                                    # The time slice in the ROI doesn't matter:
                                    # The sourceArrayParameter below overrides the input data to be used.
                                    roiSmootherList.insert(timeAxis, 0)
                                roiSmootherRegion = SubRegion(oslot, pslice=roiSmootherList)
                                
                                closure = partial(oslot.operator.execute, oslot, (), roiSmootherRegion, destArea, sourceArray = sourceArraysForSigmas[j])
                                closures.append(closure)

                                written += end - begin
                            cnt += slices
                        else:
                            if cnt>=rroi.start[axisindex] and rroi.start[axisindex] + written < rroi.stop[axisindex]:
                                reskey = [slice(None, None, None) for x in range(len(result.shape))]
                                slices = oslot.meta.shape[axisindex]
                                reskey[axisindex]=slice(written, written+slices, None)
                                #print "key: ", key, "reskey: ", reskey, "oldkey: ", oldkey, "resshape:", result.shape
                                #print "roiSmoother:", roiSmoother
                                destArea = result[tuple(reskey)]
                                #print "destination area:", destArea.shape
                                logger.debug(oldkey, destArea.shape, sourceArraysForSigmas[j].shape)
                                oldroi = SubRegion(oslot, pslice=oldkey)
                                #print "passing roi:", oldroi
                                closure = partial(oslot.operator.execute, oslot, (), oldroi, destArea, sourceArray = sourceArraysForSigmas[j])
                                closures.append(closure)

                                written += 1
                            cnt += 1
            pool = RequestPool()
            for c in closures:
                r = pool.request(c)
            pool.wait()
            pool.clean()

            for i in range(len(sourceArraysForSigmas)):
                if sourceArraysForSigmas[i] is not None:
                    try:
                        sourceArraysForSigmas[i].resize((1,))
                    except:
                        sourceArraysForSigmas[i] = None