Esempio n. 1
0
    def __init__(self, input_dim, output_dim, hidden_dims=[]):
        super().__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.hidden_dims = utils.make_iterable(hidden_dims)

        self.weights = [
            lbann.Weights(initializer=lbann.HeNormalInitializer())
            for _ in range(len(self.hidden_dims))
        ]
        self.weights.append(
            lbann.Weights(initializer=lbann.HeNormalInitializer()))
Esempio n. 2
0
    def __init__(self,
                 size,
                 bias=False,
                 weights=[],
                 activation=None,
                 transpose=False,
                 name=None,
                 parallel_strategy={}):
        """Initalize channelwise fully connected module

    Args:
        size (int or list): Dimension of the output tensor
        bias (bool): Whether to apply bias after linearity.
        transpose (bool): Whether to apply transpose of weights
                matrix.
        weights (`Weights` or iterator of `Weights`): Weights in
                fully-connected layer. There are at most two: the
                matrix and the bias. If weights are not provided, the
                matrix will be initialized with He normal
                initialization and the bias with zeros.
        activation (type): Layer class for activation function.
        name (str): Default name is in the form 'channelwisefc<index>'.
        parallel_strategy (dict): Data partitioning scheme.
    """
        super().__init__()
        ChannelwiseFullyConnectedModule.global_count += 1
        self.instance = 0
        self.size = size
        self.bias = bias
        self.transpose = transpose
        self.parallel_strategy = parallel_strategy
        self.name = (name if name else 'channelwisefc{0}'.format(
            ChannelwiseFullyConnectedModule.global_count))
        self.data_layout = 'data_parallel'

        self.weights = list(make_iterable(weights))
        if len(self.weights) > 2:
            raise ValueError('`FullyConnectedModule` has '
                             'at most two weights, '
                             'but got {0}'.format(len(self.weights)))
        if len(self.weights) == 0:
            self.weights.append(
                lbann.Weights(initializer=lbann.HeNormalInitializer(),
                              name=self.name + '_matrix'))
        if self.bias and len(self.weights) == 1:
            self.weights.append(
                lbann.Weights(initializer=lbann.ConstantInitializer(value=0.0),
                              name=self.name + '_bias'))
        self.activation = None
        if activation:
            if isinstance(activation, type):
                self.activation = activation
            else:
                self.activation = type(activation)
            if not issubclass(self.activation, lbann.Layer):
                raise ValueError('activation must be a layer')
Esempio n. 3
0
    def __init__(self, size, bias=True, weights=[], activation=None,
                 name=None, data_layout='data_parallel'):
        """Initialize fully-connected module.

        Args:
            size (int): Size of output tensor.
            activation (type): Layer class for activation function.
            bias (bool): Whether to apply bias after linearity.
            weights (`Weights` or iterator of `Weights`): Weights in
                fully-connected layer. There are at most two: the
                matrix and the bias. If weights are not provided, the
                matrix will be initialized with He normal
                initialization and the bias with zeros.
            name (str): Default name is in the form 'fcmodule<index>'.
            data_layout (str): Data layout.

        """
        super().__init__()
        FullyConnectedModule.global_count += 1
        self.instance = 0
        self.size = size
        self.bias = bias
        self.name = (name
                     if name
                     else 'fcmodule{0}'.format(FullyConnectedModule.global_count))
        self.data_layout = data_layout

        # Initialize weights
        # Note: If weights are not provided, matrix weights are
        # initialized with He normal scheme and bias weights are
        # initialized with zeros.
        self.weights = list(make_iterable(weights))
        if len(self.weights) > 2:
            raise ValueError('`FullyConnectedModule` has '
                             'at most two weights, '
                             'but got {0}'.format(len(self.weights)))
        if len(self.weights) == 0:
            self.weights.append(
                lbann.Weights(initializer=lbann.HeNormalInitializer(),
                              name=self.name+'_matrix'))
        if len(self.weights) == 1:
            self.weights.append(
                lbann.Weights(initializer=lbann.ConstantInitializer(value=0.0),
                              name=self.name+'_bias'))

        # Initialize activation layer
        self.activation = None
        if activation:
            if isinstance(activation, type):
                self.activation = activation
            else:
                self.activation = type(activation)
            if not issubclass(self.activation, lbann.Layer):
                raise ValueError('activation must be a layer')
Esempio n. 4
0
    def __init__(
        self,
        embed_dim=512,
        num_heads=8,
        feedforward_dim=2048,
        dropout=0.1,
        name=None,
    ):
        TransformerDecoderLayer.global_count += 1
        self.instance = 0
        self.embed_dim = embed_dim
        self.feedforward_dim = feedforward_dim
        self.dropout_prob = dropout

        # Module name
        self.name = name
        if not self.name:
            self.name = f'transformerdecoderlayer{TransformerDecoderLayer.global_count}'

        # Layer modules
        self.attention1 = lbann.modules.transformer.MultiheadAttention(
            embed_dim, num_heads, name=f'{self.name}_attention1')
        self.attention2 = lbann.modules.transformer.MultiheadAttention(
            embed_dim, num_heads, name=f'{self.name}_attention2')

        # Weights for fully-connected layers
        self.fc1_weights = [
            lbann.Weights(initializer=lbann.HeNormalInitializer(),
                          name=f'{self.name}_fc1_matrix'),
            lbann.Weights(initializer=lbann.ConstantInitializer(value=0),
                          name=f'{self.name}_fc1_bias'),
        ]
        self.fc2_weights = [
            lbann.Weights(initializer=lbann.GlorotNormalInitializer(),
                          name=f'{self.name}_fc2_matrix'),
            lbann.Weights(initializer=lbann.ConstantInitializer(value=0),
                          name=f'{self.name}_fc2_bias'),
        ]
Esempio n. 5
0
    def __init__(self,
                 neuron_dims=[1000, 1000, 1000],
                 activation=lbann.Relu,
                 keep_prob=0.95,
                 name=None):
        self.instance = 0
        self.name = (name if name else 'combo{0}'.format(Combo.global_count))

        #shared weights for drug 1 and 2 tracks
        shared_w = []
        for i in range(len(neuron_dims)):
            shared_w.append(
                lbann.Weights(initializer=lbann.HeNormalInitializer(),
                              name='drug_matrix' + str(i)))
            shared_w.append(
                lbann.Weights(initializer=lbann.ConstantInitializer(value=0.0),
                              name='drug_bias' + str(i)))
        print("SHARED W ", type(shared_w))

        self.geneT = TrackModule(neuron_dims,
                                 activation,
                                 keep_prob,
                                 name=self.name + 'gene_track')
        self.drug1T = TrackModule(neuron_dims,
                                  activation,
                                  keep_prob,
                                  shared_w,
                                  name=self.name + 'drug1_track')
        self.drug2T = TrackModule(neuron_dims,
                                  activation,
                                  keep_prob,
                                  shared_w,
                                  name=self.name + 'drug2_track')
        self.concatT = TrackModule(neuron_dims,
                                   activation,
                                   keep_prob,
                                   name=self.name + 'concat_track')
Esempio n. 6
0
    def __init__(self,
                 num_dims,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True,
                 weights=[],
                 activation=None,
                 name=None,
                 transpose=False,
                 parallel_strategy={}):
        """Initialize convolution module.

        Args:
            num_dims (int): Number of dimensions.
            out_channels (int): Number of output channels, i.e. number
                of filters.
            kernel_size (int): Size of convolution kernel.
            stride (int): Convolution stride.
            padding (int): Convolution padding.
            dilation (int): Convolution dilation.
            groups (int): Number of convolution groups.
            bias (bool): Whether to apply channel-wise bias after
                convolution.
            weights (`Weights` or iterator of `Weights`): Weights in
                convolution layer. There are at most two: the kernel
                and the bias. If weights are not provided, the kernel
                will be initialized with He normal initialization and
                the bias with zeros.
            name (str): Default name is in the form 'convmodule<index>'.
            transpose (bool): If true call deconvolution (or convolution
                         transpose)
            parallel_strategy dict): Data partitioning scheme.

        """
        super().__init__()
        ConvolutionModule.global_count += 1
        self.instance = 0
        self.num_dims = num_dims
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.bias = bias
        self.weights = list(make_iterable(weights))
        self.name = (name if name else 'convmodule{0}'.format(
            ConvolutionModule.global_count))
        self.transpose = transpose
        self.parallel_strategy = parallel_strategy

        # Initialize weights
        # Note: If weights are not provided, kernel weights are
        # initialized with He normal scheme and bias weights are
        # initialized with zeros.
        self.weights = list(make_iterable(weights))
        if len(self.weights) > 2:
            raise ValueError('`ConvolutionModule` has '
                             'at most two weights, '
                             'but got {0}'.format(len(self.weights)))
        if len(self.weights) == 0:
            self.weights.append(
                lbann.Weights(initializer=lbann.HeNormalInitializer(),
                              name=self.name + '_kernel'))
        if len(self.weights) == 1:
            self.weights.append(
                lbann.Weights(initializer=lbann.ConstantInitializer(value=0.0),
                              name=self.name + '_bias'))

        # Initialize activation layer
        self.activation = None
        if activation:
            if isinstance(activation, type):
                self.activation = activation
            else:
                self.activation = type(activation)
            if not issubclass(self.activation, lbann.Layer):
                raise ValueError('activation must be a layer')