def load_nii_and_gen_label(patients_path, hc_path, mask): # train data data1 = main(patients_path) data1 = np.squeeze( np.array([np.array(data1).reshape(1, -1) for data1 in data1])) data2 = main(hc_path) data2 = np.squeeze( np.array([np.array(data2).reshape(1, -1) for data2 in data2])) data = np.vstack([data1, data2]) # validation data data_val = main(validation_path) data_val = np.squeeze( np.array( [np.array(data_val).reshape(1, -1) for data_val in data_val])) # data in mask data_tr = data[:, mask] data_val = data_val[:, mask] # label_tr label_tr = np.hstack( [np.ones([ len(data1), ]) - 1, np.ones([ len(data2), ])]) return label_tr, data_tr, data_val
def load_nii_and_gen_label(BD_path, MDD_path, HC_path, suffix='.nii'): # data data1, _ = main(BD_path, suffix) data1 = np.squeeze( np.array([np.array(data1).reshape(1, -1) for data1 in data1])) data2, _ = main(MDD_path, suffix) data2 = np.squeeze( np.array([np.array(data2).reshape(1, -1) for data2 in data2])) data3, _ = main(HC_path, suffix) data3 = np.squeeze( np.array([np.array(data3).reshape(1, -1) for data3 in data3])) data = np.vstack([data1, data2, data3]) # data in mask # data_in_mask=data[:,mask] # label label = np.hstack([ np.ones([ len(data1), ]) - 1, np.ones([ len(data2), ]), np.ones([ len(data2), ]) + 1 ]) return data, label
def load_nii_and_gen_label(folder_p, folder_hc, mask): # data data_p = main(folder_p) data_p = np.squeeze( np.array([np.array(data_p).reshape(1, -1) for data_p in data_p])) data_hc = main(folder_hc) data_hc = np.squeeze( np.array([np.array(data_hc).reshape(1, -1) for data_hc in data_hc])) data = np.vstack([data_p, data_hc]) # data in mask # mask=np.sum(data==0,0)<=0 data_in_mask = data[:, mask] # label label = np.hstack( [np.ones([ len(data_p), ]), np.ones([ len(data_hc), ]) - 2]) return data, data_in_mask, label
def load_nii_and_gen_label(patients_path,controls_path,mask): # data data_p=main(patients_path) data_p=np.squeeze(np.array([np.array(data_p).reshape(1,-1) for data_p in data_p])) data_hc=main(controls_path) data_hc=np.squeeze(np.array([np.array(data_hc).reshape(1,-1) for data_hc in data_hc])) data=np.vstack([data_p,data_hc]) # data in mask data_in_mask=data[:,mask] # label label=np.hstack([np.ones([len(data_p),]),np.ones([len(data_hc),])-2]) return data,data_in_mask,label
def load_nii_and_gen_label(patients_path, hc_path, mask): # data data1, _ = main(patients_path, '.img') data1 = np.squeeze( np.array([np.array(data1).reshape(1, -1) for data1 in data1])) data2, _ = main(hc_path, '.img') data2 = np.squeeze( np.array([np.array(data2).reshape(1, -1) for data2 in data2])) data = np.vstack([data1, data2]) # data in mask data_in_mask = data[:, mask] # label label = np.hstack([np.ones([ len(data1), ]) - 1, np.ones([ len(data2), ])]) return data, data_in_mask, label