Esempio n. 1
0
 def test_setup_detrend(self):
     object_info = MissionObjectInfo("TIC 12345",
                                     sectors="all",
                                     smooth_enabled=False,
                                     high_rms_enabled=False,
                                     high_rms_threshold=3,
                                     high_rms_bin_hours=9,
                                     auto_detrend_enabled=True,
                                     auto_detrend_ratio=1 / 2,
                                     auto_detrend_method="cosine")
     sherlock = Sherlock([
         SherlockTarget(object_info=object_info,
                        detrends_number=2,
                        detrend_method="gp",
                        cpu_cores=3)
     ])
     self.assertEqual(
         False, sherlock.sherlock_targets[0].object_info.smooth_enabled)
     self.assertEqual(
         False, sherlock.sherlock_targets[0].object_info.high_rms_enabled)
     self.assertEqual(
         3, sherlock.sherlock_targets[0].object_info.high_rms_threshold)
     self.assertEqual(
         9, sherlock.sherlock_targets[0].object_info.high_rms_bin_hours)
     self.assertEqual(2, sherlock.sherlock_targets[0].detrends_number)
     self.assertEqual("gp", sherlock.sherlock_targets[0].detrend_method)
     self.assertEqual(3, sherlock.sherlock_targets[0].cpu_cores)
     self.assertEqual(
         True,
         sherlock.sherlock_targets[0].object_info.auto_detrend_enabled)
     self.assertEqual(
         1 / 2, sherlock.sherlock_targets[0].object_info.auto_detrend_ratio)
     self.assertEqual(
         "cosine",
         sherlock.sherlock_targets[0].object_info.auto_detrend_method)
Esempio n. 2
0
 def test_build(self):
     lc_build = LcBuilder().build(MissionObjectInfo("TIC 352315023", [13]), "./")
     self.assertEqual(18140, len(lc_build.lc))
     self.assertEqual(20479, len(lc_build.lc_data))
     lc_build = LcBuilder().build(MissionObjectInfo("KIC 12557548", [13]), "./")
     self.assertEqual(126304, len(lc_build.lc))
     self.assertEqual(130290, len(lc_build.lc_data))
     lc_build = LcBuilder().build(MissionObjectInfo("EPIC 211945201", 'all'), "./")
     self.assertEqual(106384, len(lc_build.lc))
     self.assertEqual(116820, len(lc_build.lc_data))
     lc_build = LcBuilder().build(MissionFfiIdObjectInfo("KIC 12557548", [1]), "./")
     self.assertEqual(1543, len(lc_build.lc))
     self.assertEqual(1639, len(lc_build.lc_data))
     lc_build = LcBuilder().build(MissionFfiIdObjectInfo("EPIC 211945201", [5]), "./")
     self.assertEqual(3271, len(lc_build.lc))
     self.assertEqual(3663, len(lc_build.lc_data))
     lc_build = LcBuilder().build(MissionFfiIdObjectInfo("TIC 352315023", [13]), "./")
     self.assertEqual(1223, len(lc_build.lc))
     self.assertEqual(1320, len(lc_build.lc_data))
Esempio n. 3
0
 def inject(self, phases, min_period, max_period, step_period, min_radius,
            max_radius, step_radius):
     #TODO get mission and proper id and author
     object_info = MissionObjectInfo(self.id, self.sectors)
     lc, lc_data, star_info, transits_min_count, sectors, quarters = \
         MissionLightcurveBuilder().build(object_info, None)
     ab, mass, massmin, massmax, radius, radiusmin, radiusmax = catalog_info(
         TIC_ID=id)
     # units for ellc
     rstar = star_info.radius * u.R_sun
     mstar = star_info.mass * u.M_sun
     mstar_min = star_info.mass_min * u.M_sun
     mstar_max = star_info.mass_max * u.M_sun
     rstar_min = star_info.radius_min * u.R_sun
     rstar_max = star_info.radius_max * u.R_sun
     print('\n STELLAR PROPERTIES FOR THE SIGNAL SEARCH')
     print('================================================\n')
     print('limb-darkening estimates using quadratic LD (a,b)=', ab)
     print('mass =', format(mstar, '0.5f'))
     print('mass_min =', format(mstar_min, '0.5f'))
     print('mass_max =', format(mstar_max, '0.5f'))
     print('radius =', format(rstar, '0.5f'))
     print('radius_min =', format(rstar_min, '0.5f'))
     print('radius_max =', format(rstar_max, '0.5f'))
     lc_new = lk.LightCurve(time=lc.time,
                            flux=lc.flux,
                            flux_err=lc.flux_err)
     clean = lc_new.remove_outliers(sigma_lower=float('inf'), sigma_upper=3)
     flux0 = clean.flux
     time = clean.time
     flux_err = clean.flux_err
     if not os.path.isdir(self.dir):
         os.mkdir(self.dir)
     for period in np.arange(min_period, max_period, step_period):
         for t0 in np.arange(time[60], time[60] + period - 0.1,
                             period / phases):
             for rplanet in np.arange(min_radius, max_radius, step_radius):
                 rplanet = np.around(rplanet, decimals=2) * u.R_earth
                 print('\n')
                 print('P = ' + str(period) + ' days, Rp = ' +
                       str(rplanet) + ", T0 = " + str(t0))
                 time_model, flux_model, flux_err_model = self.__make_model(
                     time, flux0, flux_err, rstar, mstar, t0, period,
                     rplanet)
                 file_name = os.path.join(self.dir + '/P' + str(period) +
                                          '_R' + str(rplanet.value) + '_' +
                                          str(t0) + '.csv')
                 lc_df = pd.DataFrame(columns=['#time', 'flux', 'flux_err'])
                 lc_df['#time'] = time_model
                 lc_df['flux'] = flux_model
                 lc_df['flux_err'] = flux_err_model
                 lc_df.to_csv(file_name, index=False)
Esempio n. 4
0
 def test_run_with_autodetrend(self):
     run_dir = None
     try:
         Sherlock([
             SherlockTarget(MissionObjectInfo("TIC 259377017", [5],
                                              auto_detrend_enabled=True),
                            detrends_number=1,
                            max_runs=1,
                            oversampling=0.05)
         ], True).run()
         run_dir = "TIC259377017_[5]"
         self.assertTrue(os.path.exists(run_dir))
         self.assertTrue(
             os.path.exists(
                 run_dir +
                 "/Phase_detrend_period_TIC259377017_[5]_0.52_days.png"))
     finally:
         self.__clean(run_dir)
Esempio n. 5
0
 def test_short_cadence_epic(self):
     lc_build = LcBuilder().build(MissionObjectInfo("EPIC 211945201", 'all'), "./")
     self.assertEqual(lc_build.cadence, 59)
     self.assertGreater(len(lc_build.lc), 0)
     self.__test_k2_star_params(lc_build.star_info)
Esempio n. 6
0
 def test_short_cadence_kic(self):
     lc_build = LcBuilder().build(MissionObjectInfo("KIC 12557548", 'all'), "./")
     self.assertEqual(lc_build.cadence, 59)
     self.assertGreater(len(lc_build.lc), 0)
     self.__test_kepler_star_params(lc_build.star_info)
Esempio n. 7
0
 def test_short_cadence(self):
     lc_build = LcBuilder().build(MissionObjectInfo("TIC 352315023", 'all'), "./")
     self.assertEqual(lc_build.cadence, 120)
     self.assertGreater(len(lc_build.lc), 0)
     self.__test_tess_star_params(lc_build.star_info)
Esempio n. 8
0
    # 'auto_detrend_ratio' value, which ensures that we are detrending the light curve at 'auto_detrend_ratio' times
    # the stronger period.

    # 7 Set the maximum number of runs to be executed.
    # 8 Select the period protect value, which restricts the minimum detrending window length.
    # 9 Select the min period for a transit to be fit.
    # 10 Select the max period for a transit to be fit.
    # 11 Select the binning to calculate RMS
    # 12 Select the number of CPU cores to be used for the transit search.
    # 13 Select the found transits masking method. We use subtract here as example, but it is discouraged.
    # 14 Select the best signal algorithm, which provides a different implementation to decide which of the detrend
    # signals is the stronger one to be selected.
    # 15 Set the strength of the quorum algorithm votes, which makes every vote that is found to increase the SNR by
    # a factor of 1.2 for our selection.
    arguments = {"smoooth_enabled": True, "high_rms_enabled": True, "high_rms_threshold": 2.5,
                 "high_rms_bin_hours": 3,
                 "detrends_number": 12, "detrend_method": "gp", "cpu_cores": 2, "auto_detrend_enabled": True,
                 "auto_detrend_ratio": 0.33, "auto_detrend_method": "cosine",
                 "max_runs": 10, "period_protect": 12, "period_min": 1, "period_max": 10, "bin_minutes": 20,
                 "run_cores": 3, "snr_min": 6, "sde_min": 6, "mask_mode": "subtract",
                 "best_signal_algorithm": 'quorum', "quorum_strength": 1.2}
    sherlock = Sherlock([SherlockTarget(MissionFfiIdObjectInfo("TIC 181804752", 'all'), **arguments),
                                        SherlockTarget(MissionObjectInfo("TIC 259168516", [15]), **arguments),
                                        SherlockTarget(MissionObjectInfo('KIC 10905746', 'all'), **arguments),
                                        SherlockTarget(MissionObjectInfo('EPIC 249631677', 'all'), **arguments),
                                        SherlockTarget(MissionInputObjectInfo("TIC 181804752", 'example_lc.csv',
                                                               initial_mask=[[1625, 1626], [1645, 1646]]), **arguments),
                                        SherlockTarget(InputObjectInfo("example_lc.csv", initial_detrend_period=0.8), **arguments)]) \
        .run()
    print("Analysis took " + elapsed() + "s")
Esempio n. 9
0
 def build(self, object_info: MissionObjectInfo, sherlock_dir, caches_root_dir):
     mission_id = object_info.mission_id()
     sherlock_id = object_info.sherlock_id()
     logging.info("Retrieving star catalog info...")
     mission, mission_prefix, id = super().parse_object_id(mission_id)
     if mission_prefix not in self.star_catalogs:
         raise ValueError("Wrong object id " + mission_id)
     cadence = object_info.cadence if object_info.cadence is not None else "short"
     author = object_info.author if object_info.author is not None else self.authors[mission]
     star_info = starinfo.StarInfo(sherlock_id, *self.star_catalogs[mission_prefix].catalog_info(id))
     logging.info("Downloading lightcurve files...")
     sectors = None if object_info.sectors == 'all' or mission != constants.MISSION_TESS else object_info.sectors
     campaigns = None if object_info.sectors == 'all' or mission != constants.MISSION_K2 else object_info.sectors
     quarters = None if object_info.sectors == 'all' or mission != constants.MISSION_KEPLER else object_info.sectors
     tokens = sectors if sectors is not None else campaigns if campaigns is not None else quarters
     tokens = tokens if tokens is not None else "all"
     apertures = {}
     tpf_search_results = lk.search_targetpixelfile(str(mission_id))
     for tpf_search_result in tpf_search_results:
         logging.info("There is data for Mission: %s, Year %.0f, Author: %s, ExpTime: %.0f",
                      tpf_search_result.mission[0], tpf_search_result.year[0], tpf_search_result.author[0],
                      tpf_search_result.exptime[0].value)
     tpfs_dir = sherlock_dir + "/tpfs/"
     if not os.path.exists(tpfs_dir):
         os.mkdir(tpfs_dir)
     if object_info.apertures is None:
         lcf_search_results = lk.search_lightcurve(str(mission_id), mission=mission, cadence=cadence,
                                        sector=sectors, quarter=quarters,
                                        campaign=campaigns, author=author)
         lcf = lcf_search_results.download_all(download_dir=caches_root_dir + LIGHTKURVE_CACHE_DIR)
         tpfs = lk.search_targetpixelfile(str(mission_id), mission=mission, cadence=cadence,
                                        sector=sectors, quarter=quarters,
                                        campaign=campaigns, author=author)\
             .download_all(download_dir=caches_root_dir + LIGHTKURVE_CACHE_DIR,
                           cutout_size=(CUTOUT_SIZE, CUTOUT_SIZE))
         if lcf is None:
             raise ObjectProcessingError("The target " + str(mission_id) + " is not available for the author " + author +
                              ", cadence " + str(cadence) + "s and sectors " + str(tokens))
         lc_data = self.extract_lc_data(lcf)
         lc = None
         matching_objects = []
         for tpf in tpfs:
             shutil.copy(tpf.path, tpfs_dir + os.path.basename(tpf.path))
             if mission_prefix == self.MISSION_ID_KEPLER:
                 sector = tpf.quarter
             elif mission_prefix == self.MISSION_ID_TESS:
                 sector = tpf.sector
             if mission_prefix == self.MISSION_ID_KEPLER_2:
                 sector = tpf.campaign
             apertures[sector] = ApertureExtractor.from_boolean_mask(tpf.pipeline_mask, tpf.column, tpf.row)
         for i in range(0, len(lcf.data)):
             if lcf.data[i].label == mission_id:
                 if lc is None:
                     lc = lcf.data[i].normalize()
                 else:
                     lc = lc.append(lcf.data[i].normalize())
             else:
                 matching_objects.append(lcf.data[i].label)
         matching_objects = set(matching_objects)
         if len(matching_objects) > 0:
             logging.warning("================================================")
             logging.warning("TICS IN THE SAME PIXEL: " + str(matching_objects))
             logging.warning("================================================")
         if lc is None:
             tokens = sectors if sectors is not None else campaigns if campaigns is not None else quarters
             tokens = tokens if tokens is not None else "all"
             raise ObjectProcessingError("The target " + str(mission_id) + " is not available for the author " + author +
                              ", cadence " + str(cadence) + "s and sectors " + str(tokens))
         lc = lc.remove_nans()
         transits_min_count = self.__calculate_transits_min_count(len(lcf))
         if mission_prefix == self.MISSION_ID_KEPLER:
             sectors = [lcfile.quarter for lcfile in lcf]
         elif mission_prefix == self.MISSION_ID_TESS:
             sectors = [file.sector for file in lcf]
         elif mission_prefix == self.MISSION_ID_KEPLER_2:
             logging.info("Correcting K2 motion in light curve...")
             sectors = [lcfile.campaign for lcfile in lcf]
             lc = lc.to_corrector("sff").correct(windows=20)
         source = "tpf"
     else:
         logging.info("Using user apertures!")
         tpf_search_results = lk.search_targetpixelfile(str(mission_id), mission=mission, cadence=cadence,
                                          sector=sectors, quarter=quarters, campaign=campaigns,
                                          author=author)
         tpfs = tpf_search_results.download_all(download_dir=caches_root_dir + LIGHTKURVE_CACHE_DIR,
                                                cutout_size=(CUTOUT_SIZE, CUTOUT_SIZE))
         source = "tpf"
         apertures = object_info.apertures
         lc = None
         for tpf in tpfs:
             shutil.copy(tpf.path, tpfs_dir + os.path.basename(tpf.path))
             if mission_prefix == self.MISSION_ID_KEPLER:
                 sector = tpf.quarter
             elif mission_prefix == self.MISSION_ID_TESS:
                 sector = tpf.sector
             elif mission_prefix == self.MISSION_ID_KEPLER_2:
                 sector = tpf.campaign
             boolean_aperture = ApertureExtractor.from_pixels_to_boolean_mask(apertures[sector], tpf.column, tpf.row,
                                                                      CUTOUT_SIZE, CUTOUT_SIZE)
             tpf.plot(aperture_mask=boolean_aperture, mask_color='red')
             plt.savefig(sherlock_dir + "/fov/Aperture_[" + str(sector) + "].png")
             plt.close()
             if mission_prefix == self.MISSION_ID_KEPLER:
                 corrector = lk.KeplerCBVCorrector(tpf)
                 corrector.plot_cbvs([1, 2, 3, 4, 5, 6, 7])
                 raw_lc = tpf.to_lightcurve(aperture_mask=boolean_aperture).remove_nans()
                 plt.savefig(sherlock_dir + "/Corrector_components[" + str(sector) + "].png")
                 plt.close()
                 it_lc = corrector.correct([1, 2, 3, 4, 5])
                 ax = raw_lc.plot(color='C3', label='SAP Flux', linestyle='-')
                 it_lc.plot(ax=ax, color='C2', label='CBV Corrected SAP Flux', linestyle='-')
                 plt.savefig(sherlock_dir + "/Raw_vs_CBVcorrected_lc[" + str(sector) + "].png")
                 plt.close()
             elif mission_prefix == self.MISSION_ID_KEPLER_2:
                 raw_lc = tpf.to_lightcurve(aperture_mask=boolean_aperture).remove_nans()
                 it_lc = raw_lc.to_corrector("sff").correct(windows=20)
                 ax = raw_lc.plot(color='C3', label='SAP Flux', linestyle='-')
                 it_lc.plot(ax=ax, color='C2', label='CBV Corrected SAP Flux', linestyle='-')
                 plt.savefig(sherlock_dir + "/Raw_vs_SFFcorrected_lc[" + str(sector) + "].png")
                 plt.close()
             elif mission_prefix == self.MISSION_ID_TESS:
                 temp_lc = tpf.to_lightcurve(aperture_mask=boolean_aperture)
                 where_are_NaNs = np.isnan(temp_lc.flux)
                 temp_lc = temp_lc[np.where(~where_are_NaNs)]
                 regressors = tpf.flux[np.argwhere(~where_are_NaNs), ~boolean_aperture]
                 temp_token_lc = [temp_lc[i: i + 2000] for i in range(0, len(temp_lc), 2000)]
                 regressors_token = [regressors[i: i + 2000] for i in range(0, len(regressors), 2000)]
                 it_lc = None
                 raw_it_lc = None
                 item_index = 0
                 for temp_token_lc_item in temp_token_lc:
                     regressors_token_item = regressors_token[item_index]
                     design_matrix = lk.DesignMatrix(regressors_token_item, name='regressors').pca(5).append_constant()
                     corr_lc = lk.RegressionCorrector(temp_token_lc_item).correct(design_matrix)
                     if it_lc is None:
                         it_lc = corr_lc
                         raw_it_lc = temp_token_lc_item
                     else:
                         it_lc = it_lc.append(corr_lc)
                         raw_it_lc = raw_it_lc.append(temp_token_lc_item)
                     item_index = item_index + 1
                 ax = raw_it_lc.plot(label='Raw light curve')
                 it_lc.plot(ax=ax, label='Corrected light curve')
                 plt.savefig(sherlock_dir + "/Raw_vs_DMcorrected_lc[" + str(sector) + "].png")
                 plt.close()
             if lc is None:
                 lc = it_lc.normalize()
             else:
                 lc = lc.append(it_lc.normalize())
         lc = lc.remove_nans()
         lc.plot(label="Normalized light curve")
         plt.savefig(sherlock_dir + "/Normalized_lc[" + str(sector) + "].png")
         plt.close()
         transits_min_count = self.__calculate_transits_min_count(len(tpfs))
         if mission_prefix == self.MISSION_ID_KEPLER or mission_id == self.MISSION_ID_KEPLER_2:
             sectors = [lcfile.quarter for lcfile in tpfs]
         elif mission_prefix == self.MISSION_ID_TESS:
             sectors = [file.sector for file in tpfs]
         if mission_prefix == self.MISSION_ID_KEPLER_2:
             logging.info("Correcting K2 motion in light curve...")
             sectors = [lcfile.campaign for lcfile in tpfs]
         sectors = None if sectors is None else np.unique(sectors)
         lc_data = None
     return LcBuild(lc, lc_data, star_info, transits_min_count, cadence, None, sectors, source, apertures)
from contextlib import contextmanager
from timeit import default_timer
from sherlockpipe.sherlock import Sherlock
from lcbuilder.objectinfo.MissionObjectInfo import MissionObjectInfo

from sherlockpipe.sherlock_target import SherlockTarget


@contextmanager
def elapsed_timer():
    start = default_timer()
    elapser = lambda: str(default_timer() - start)
    yield lambda: elapser()
    end = default_timer()
    elapser = lambda: str(end - start)


with elapsed_timer() as elapsed:
    # We will use only one mission object and will mask a time range from 1550 to 1551 and from 1560 to 1561
    sherlock = Sherlock([SherlockTarget(MissionObjectInfo("TIC 181804752", 'all',
                                                    initial_mask=[[1550, 1551], [1560, 1561]]))])\
        .run()
    print("Analysis took " + elapsed() + "s")
Esempio n. 11
0
@contextmanager
def elapsed_timer():
    start = default_timer()
    elapser = lambda: str(default_timer() - start)
    yield lambda: elapser()
    end = default_timer()
    elapser = lambda: str(end - start)


with elapsed_timer() as elapsed:
    # We will use only one object id so we can explain better the detrend configs that the coder can select
    # We will:
    # 1 Enable the initial smooth function, which reduces local noise in the signal.
    # 2 Enable the initial High RMS areas masking. This procedure will mask all the lightcurve time binned ranges by
    # the 'initial_rms_bin_hours' value with a threshold of the 'initial_rms_threshold' value * RMS_median.
    # 3 Set the number of detrends to be done from PDCSAP_FLUX for each run.
    # 4 Set the SHERLOCK PDCSAP_FLUX detrends method to Gaussian Processes.
    # 5 Set the number of CPU cores to be used by the detrending procedure.
    # 6 Enable the Auto-Detrend detection, which will search for strong periodicities in the light curve and do an
    # initial detrend for it based on the selected 'auto_detrend_method' method and the value of the
    # 'auto_detrend_ratio' value, which ensures that we are detrending the light curve at 'auto_detrend_ratio' times
    # the stronger period.
    sherlock = Sherlock([SherlockTarget(object_info=MissionObjectInfo("TIC 181804752", 'all'),
                                        smooth_enabled=True, high_rms_enabled=True, high_rms_threshold=2.5, high_rms_bin_hours=3,
                                        detrends_number=12, detrend_method="gp", cpu_cores=2,
                                        auto_detrend_enabled=True, auto_detrend_ratio=0.33,
                                        auto_detrend_method="cosine")]) \
        .run()
    print("Analysis took " + elapsed() + "s")
Esempio n. 12
0
from sherlockpipe.sherlock import Sherlock
from lcbuilder.objectinfo.InputObjectInfo import InputObjectInfo
from lcbuilder.objectinfo.MissionFfiCoordsObjectInfo import MissionFfiCoordsObjectInfo
from lcbuilder.objectinfo.MissionFfiIdObjectInfo import MissionFfiIdObjectInfo
from lcbuilder.objectinfo.MissionInputObjectInfo import MissionInputObjectInfo
from lcbuilder.objectinfo.MissionObjectInfo import MissionObjectInfo

from sherlockpipe.sherlock_target import SherlockTarget


@contextmanager
def elapsed_timer():
    start = default_timer()
    elapser = lambda: str(default_timer() - start)
    yield lambda: elapser()
    end = default_timer()
    elapser = lambda: str(end - start)


with elapsed_timer() as elapsed:
    # Adding several kinds of objects to the run: one short cadence TIC, one FFI TIC, one coordinates FFI, one input
    # file related to a TIC and one plain input file.
    # Ensure that your input light curve CSV files have three columns: #TBJD,flux,flux_err
    sherlock = Sherlock([SherlockTarget(MissionObjectInfo("TIC 181804752", 'all')),
                                        SherlockTarget(MissionFfiIdObjectInfo("TIC 259168516", [14, 15])),
                                        SherlockTarget(MissionFfiCoordsObjectInfo(14, 19, 'all')),
                                        SherlockTarget(MissionInputObjectInfo("TIC 470381900", "example_lightcurve.csv")),
                                        SherlockTarget(InputObjectInfo("example_lc.csv"))])\
        .run()
    print("Analysis took " + elapsed() + "s")
Esempio n. 13
0
 def build_object_info(self,
                       target_name,
                       author,
                       sectors,
                       file,
                       cadence,
                       initial_mask,
                       initial_transit_mask,
                       star_info,
                       aperture,
                       eleanor_corr_flux='pca_flux',
                       outliers_sigma=None,
                       high_rms_enabled=True,
                       high_rms_threshold=2.5,
                       high_rms_bin_hours=4,
                       smooth_enabled=False,
                       auto_detrend_enabled=False,
                       auto_detrend_method="cosine",
                       auto_detrend_ratio=0.25,
                       auto_detrend_period=None,
                       prepare_algorithm=None,
                       reduce_simple_oscillations=False,
                       oscillation_snr_threshold=4,
                       oscillation_amplitude_threshold=0.1,
                       oscillation_ws_scale=60,
                       oscillation_min_period=0.002,
                       oscillation_max_period=0.2,
                       binning=1):
     mission, mission_prefix, id = MissionLightcurveBuilder(
     ).parse_object_id(target_name)
     coords = None if mission is not None else self.parse_coords(
         target_name)
     cadence = cadence if cadence is not None else self.DEFAULT_CADENCES_FOR_MISSION[
         mission]
     if mission is not None and file is None and cadence <= 300:
         return MissionObjectInfo(
             target_name, sectors, author, cadence, initial_mask,
             initial_transit_mask, star_info, aperture, outliers_sigma,
             high_rms_enabled, high_rms_threshold, high_rms_bin_hours,
             smooth_enabled, auto_detrend_enabled, auto_detrend_method,
             auto_detrend_ratio, auto_detrend_period, prepare_algorithm,
             reduce_simple_oscillations, oscillation_snr_threshold,
             oscillation_amplitude_threshold, oscillation_ws_scale,
             oscillation_min_period, oscillation_max_period, binning)
     elif mission is not None and file is None and cadence > 300:
         return MissionFfiIdObjectInfo(
             target_name, sectors, author, cadence, initial_mask,
             initial_transit_mask, star_info, aperture, eleanor_corr_flux,
             outliers_sigma, high_rms_enabled, high_rms_threshold,
             high_rms_bin_hours, smooth_enabled, auto_detrend_enabled,
             auto_detrend_method, auto_detrend_ratio, auto_detrend_period,
             prepare_algorithm, reduce_simple_oscillations,
             oscillation_snr_threshold, oscillation_amplitude_threshold,
             oscillation_ws_scale, oscillation_min_period,
             oscillation_max_period, binning)
     elif mission is not None and file is not None:
         return MissionInputObjectInfo(
             target_name, file, initial_mask, initial_transit_mask,
             star_info, outliers_sigma, high_rms_enabled,
             high_rms_threshold, high_rms_bin_hours, smooth_enabled,
             auto_detrend_enabled, auto_detrend_method, auto_detrend_ratio,
             auto_detrend_period, prepare_algorithm,
             reduce_simple_oscillations, oscillation_snr_threshold,
             oscillation_amplitude_threshold, oscillation_ws_scale,
             oscillation_min_period, oscillation_max_period, binning)
     elif mission is None and coords is not None and cadence > 300:
         return MissionFfiCoordsObjectInfo(
             coords[0], coords[1], sectors, author, cadence, initial_mask,
             initial_transit_mask, star_info, aperture, eleanor_corr_flux,
             outliers_sigma, high_rms_enabled, high_rms_threshold,
             high_rms_bin_hours, smooth_enabled, auto_detrend_enabled,
             auto_detrend_method, auto_detrend_ratio, auto_detrend_period,
             prepare_algorithm, reduce_simple_oscillations,
             oscillation_snr_threshold, oscillation_amplitude_threshold,
             oscillation_ws_scale, oscillation_min_period,
             oscillation_max_period, binning)
     elif mission is None and file is not None:
         return InputObjectInfo(
             file, initial_mask, initial_transit_mask, star_info,
             outliers_sigma, high_rms_enabled, high_rms_threshold,
             high_rms_bin_hours, smooth_enabled, auto_detrend_enabled,
             auto_detrend_method, auto_detrend_ratio, auto_detrend_period,
             prepare_algorithm, reduce_simple_oscillations,
             oscillation_snr_threshold, oscillation_amplitude_threshold,
             oscillation_ws_scale, oscillation_min_period,
             oscillation_max_period, binning)
     else:
         raise ValueError(
             "Invalid target definition with target_name={}, mission={}, id={}, coords={}, sectors={}, file={}, "
             "cadence={}".format(target_name, mission, id, coords, sectors,
                                 file, cadence))
from contextlib import contextmanager
from timeit import default_timer
from sherlockpipe.sherlock import Sherlock
from lcbuilder.objectinfo.MissionObjectInfo import MissionObjectInfo

from sherlockpipe.sherlock_target import SherlockTarget


@contextmanager
def elapsed_timer():
    start = default_timer()
    elapser = lambda: str(default_timer() - start)
    yield lambda: elapser()
    end = default_timer()
    elapser = lambda: str(end - start)


with elapsed_timer() as elapsed:
    # We will use only one mission object and set the period to be initially detrended with a window size of 1/3 times
    # the given period.
    sherlock = Sherlock([SherlockTarget(MissionObjectInfo("TIC 181804752", 'all'), auto_detrend_ratio=1 / 3)])\
        .run()
    print("Analysis took " + elapsed() + "s")
Esempio n. 15
0
 def prepare_tic(self, prepare_tic_input):
     tic_id = str(prepare_tic_input.tic)
     target_dir = prepare_tic_input.dir + tic_id + "/"
     if not os.path.isdir(target_dir):
         os.mkdir(target_dir)
     tpfs_short_dir = target_dir + "tpfs_short/"
     tpfs_long_dir = target_dir + "tpfs_long/"
     if not os.path.isdir(tpfs_short_dir):
         os.mkdir(tpfs_short_dir)
     if not os.path.isdir(tpfs_long_dir):
         os.mkdir(tpfs_long_dir)
     lc_short = None
     lc_data_short = None
     failed_target = None
     try:
         mission_lightcurve_builder = MissionLightcurveBuilder()
         mission_ffi_lightcurve_builder = MissionFfiLightcurveBuilder()
     except Exception as e:
         failed_target = tic_id
         logging.exception(e)
     try:
         logging.info("Trying to get short cadence info for " +
                      str(prepare_tic_input.tic))
         lcbuild_short = \
             mission_lightcurve_builder.build(MissionObjectInfo(tic_id, 'all'), None, self.cache_dir)
         lc_short = lcbuild_short.lc
         lc_data_short = self.store_lc_data(
             lcbuild_short.lc_data, target_dir + "time_series_short.csv")
         tpf_short = lk.search_targetpixelfile(
             tic_id, cadence="short",
             author="spoc").download_all(download_dir=self.cache_dir +
                                         ".lightkurve-cache")
         for tpf in tpf_short.data:
             shutil.copy(tpf.path,
                         tpfs_short_dir + os.path.basename(tpf.path))
         short_periodogram = lc_short.to_periodogram(oversample_factor=5)
         periodogram_df = pd.DataFrame(columns=['period', 'power'])
         periodogram_df["period"] = short_periodogram.period.value
         periodogram_df["power"] = short_periodogram.power.value
         periodogram_df.to_csv(target_dir + "periodogram_short.csv")
     except Exception as e:
         logging.warning("No Short Cadence data for target " +
                         str(prepare_tic_input.tic))
         logging.exception(e)
     logging.info("Trying to get long cadence info for " +
                  str(prepare_tic_input.tic))
     try:
         lcbuild_long = \
             mission_ffi_lightcurve_builder.build(MissionFfiIdObjectInfo(tic_id, 'all'), None,
                                                  self.cache_dir)
         star_df = pd.DataFrame(columns=[
             'obj_id', 'ra', 'dec', 'R_star', 'R_star_lerr', 'R_star_uerr',
             'M_star', 'M_star_lerr', 'M_star_uerr', 'Teff_star',
             'Teff_star_lerr', 'Teff_star_uerr', 'ld_a', 'ld_b'
         ])
         ld_a = lcbuild_long.star_info.ld_coefficients[
             0] if lcbuild_long.star_info.ld_coefficients is not None else None
         ld_b = lcbuild_long.star_info.ld_coefficients[
             1] if lcbuild_long.star_info.ld_coefficients is not None else None
         star_df = star_df.append(
             {
                 'obj_id':
                 tic_id,
                 'ra':
                 lcbuild_long.star_info.ra,
                 'dec':
                 lcbuild_long.star_info.dec,
                 'R_star':
                 lcbuild_long.star_info.radius,
                 'R_star_lerr':
                 lcbuild_long.star_info.radius -
                 lcbuild_long.star_info.radius_min,
                 'R_star_uerr':
                 lcbuild_long.star_info.radius_max -
                 lcbuild_long.star_info.radius,
                 'M_star':
                 lcbuild_long.star_info.mass,
                 'M_star_lerr':
                 lcbuild_long.star_info.mass -
                 lcbuild_long.star_info.mass_min,
                 'M_star_uerr':
                 lcbuild_long.star_info.mass_max -
                 lcbuild_long.star_info.mass,
                 'Teff_star':
                 lcbuild_long.star_info.teff,
                 'Teff_star_lerr':
                 200,
                 'Teff_star_uerr':
                 200,
                 'logg':
                 lcbuild_long.star_info.logg,
                 'logg_err':
                 lcbuild_long.star_info.logg_err,
                 'ld_a':
                 ld_a,
                 'ld_b':
                 ld_b,
                 'feh':
                 lcbuild_long.star_info.feh,
                 'feh_err':
                 lcbuild_long.star_info.feh_err,
                 'v':
                 lcbuild_long.star_info.v,
                 'v_err':
                 lcbuild_long.star_info.v_err,
                 'j':
                 lcbuild_long.star_info.j,
                 'j_err':
                 lcbuild_long.star_info.j_err,
                 'k':
                 lcbuild_long.star_info.k,
                 'k_err':
                 lcbuild_long.star_info.k_err,
                 'h':
                 lcbuild_long.star_info.h,
                 'h_err':
                 lcbuild_long.star_info.h_err,
                 'kp':
                 lcbuild_long.star_info.kp
             },
             ignore_index=True)
         star_df.to_csv(target_dir + "params_star.csv", index=False)
         sectors = lcbuild_long.sectors
         lc_long = lcbuild_long.lc
         lc_data_long = self.store_lc_data(
             lcbuild_long.lc_data, target_dir + "time_series_long.csv")
         lcf_long = lc_long.remove_nans()
         tpf_long = lk.search_targetpixelfile(tic_id, cadence="long", author="tess-spoc")\
             .download_all(download_dir=self.cache_dir + ".lightkurve-cache")
         for tpf in tpf_long.data:
             shutil.copy(tpf.path,
                         tpfs_long_dir + os.path.basename(tpf.path))
         long_periodogram = lc_long.to_periodogram(oversample_factor=5)
         periodogram_df = pd.DataFrame(columns=['period', 'power'])
         periodogram_df["period"] = long_periodogram.period.value
         periodogram_df["power"] = long_periodogram.power.value
         periodogram_df.to_csv(target_dir + "periodogram_long.csv")
         logging.info("Downloading neighbour stars for " +
                      prepare_tic_input.tic)
         #TODO get neighbours light curves stars = self.download_neighbours(prepare_tic_input.tic, sectors)
         logging.info("Classifying candidate points for " +
                      prepare_tic_input.tic)
         target_ois = prepare_tic_input.target_ois[
             (prepare_tic_input.target_ois["Disposition"] == "CP") |
             (prepare_tic_input.target_ois["Disposition"] == "KP")]
         target_ois_df = pd.DataFrame(columns=[
             'id', 'name', 'period', 'period_err', 't0', 'to_err', 'depth',
             'depth_err', 'duration', 'duration_err'
         ])
         if lc_data_short is not None:
             tags_series_short = np.full(len(lc_data_short.time), "BL")
         tags_series_long = np.full(len(lc_data_long.time), "BL")
         if prepare_tic_input.label is not None:
             for index, row in target_ois.iterrows():
                 if row["OI"] not in prepare_tic_input.excluded_ois:
                     logging.info(
                         "Classifying candidate points with OI %s, period %s, t0 %s and duration %s for "
                         + prepare_tic_input.tic, row["OI"],
                         row["Period (days)"], row["Epoch (BJD)"],
                         row["Duration (hours)"])
                     target_ois_df = target_ois_df.append(
                         {
                             "id": row["Object Id"],
                             "name": row["OI"],
                             "period": row["Period (days)"],
                             "period_err": row["Period (days) err"],
                             "t0": row["Epoch (BJD)"] - 2457000.0,
                             "to_err": row["Epoch (BJD) err"],
                             "depth": row["Depth (ppm)"],
                             "depth_err": row["Depth (ppm) err"],
                             "duration": row["Duration (hours)"],
                             "duration_err": row["Duration (hours) err"]
                         },
                         ignore_index=True)
                     if lc_short is not None:
                         mask_short = tls.transit_mask(
                             lc_data_short["time"].to_numpy(),
                             row["Period (days)"],
                             row["Duration (hours)"] / 24,
                             row["Epoch (BJD)"] - 2457000.0)
                         tags_series_short[
                             mask_short] = prepare_tic_input.label
                     mask_long = tls.transit_mask(
                         lc_data_long["time"].to_numpy(),
                         row["Period (days)"], row["Duration (hours)"] / 24,
                         row["Epoch (BJD)"] - 2457000.0)
                     tags_series_long[mask_long] = prepare_tic_input.label
             for index, row in prepare_tic_input.target_additional_ois_df.iterrows(
             ):
                 if row["OI"] not in prepare_tic_input.excluded_ois:
                     target_ois_df = target_ois_df.append(
                         {
                             "id": row["Object Id"],
                             "name": row["OI"],
                             "period": row["Period (days)"],
                             "period_err": row["Period (days) err"],
                             "t0": row["Epoch (BJD)"] - 2457000.0,
                             "to_err": row["Epoch (BJD) err"],
                             "depth": row["Depth (ppm)"],
                             "depth_err": row["Depth (ppm) err"],
                             "duration": row["Duration (hours)"],
                             "duration_err": row["Duration (hours) err"]
                         },
                         ignore_index=True)
                     if lc_short is not None:
                         mask_short = tls.transit_mask(
                             lc_data_short["time"].to_numpy(),
                             row["Period (days)"],
                             row["Duration (hours)"] / 24,
                             row["Epoch (BJD)"] - 2457000.0)
                         tags_series_short[
                             mask_short] = prepare_tic_input.label
                     mask_long = tls.transit_mask(
                         lc_data_long["time"].to_numpy(),
                         row["Period (days)"], row["Duration (hours)"] / 24,
                         row["Epoch (BJD)"] - 2457000.0)
                     tags_series_long[mask_long] = prepare_tic_input.label
         target_ois_df.to_csv(target_dir + "/ois.csv")
         if lc_data_short is not None:
             lc_data_short["tag"] = tags_series_short
             lc_data_short.to_csv(target_dir + "time_series_short.csv")
         lc_data_long["tag"] = tags_series_long
         lc_data_long.to_csv(target_dir + "time_series_long.csv")
         # TODO store folded light curves -with local and global views-(masking previous candidates?)
     except Exception as e:
         failed_target = tic_id
         logging.exception(e)
     return failed_target
Esempio n. 16
0
 def recovery(self, cores, simplified=True, sherlock_samples=3):
     object_info = MissionObjectInfo(self.id, self.sectors)
     lc, lc_data, star_info, transits_min_count, sectors, quarters = \
         MissionLightcurveBuilder().build(object_info, None)
     ab, mass, massmin, massmax, radius, radiusmin, radiusmax = catalog_info(
         TIC_ID=id)
     # units for ellc
     rstar = star_info.radius * u.R_sun
     mstar = star_info.mass * u.M_sun
     mstar_min = star_info.mass_min * u.M_sun
     mstar_max = star_info.mass_max * u.M_sun
     rstar_min = star_info.radius_min * u.R_sun
     rstar_max = star_info.radius_max * u.R_sun
     print('\n STELLAR PROPERTIES FOR THE SIGNAL SEARCH')
     print('================================================\n')
     print('limb-darkening estimates using quadratic LD (a,b)=', ab)
     print('mass =', format(mstar, '0.5f'))
     print('mass_min =', format(mstar_min, '0.5f'))
     print('mass_max =', format(mstar_max, '0.5f'))
     print('radius =', format(rstar, '0.5f'))
     print('radius_min =', format(rstar_min, '0.5f'))
     print('radius_max =', format(rstar_max, '0.5f'))
     lc_new = lk.LightCurve(time=lc.time,
                            flux=lc.flux,
                            flux_err=lc.flux_err)
     clean = lc_new.remove_outliers(sigma_lower=float('inf'), sigma_upper=3)
     flux0 = clean.flux
     time = clean.time
     flux_err = clean.flux_err
     report = {}
     reports_df = pd.DataFrame(columns=[
         'period', 'radius', 'epoch', 'found', 'snr', 'sde', 'run'
     ])
     known_transits = [{
         "T0": 2458684.832891 - 2450000,
         "P": 3.119035,
         "D": 1.271571 / 24
     }, {
         "T0": 2458687.539955 - 2450000,
         "P": 6.387611,
         "D": 1.246105 / 24
     }]
     inject_dir = self.dir + "/curves/"
     for file in os.listdir(inject_dir):
         if file.endswith(".csv"):
             try:
                 period = float(re.search("P([0-9]+\\.[0-9]+)", file)[1])
                 r_planet = float(re.search("R([0-9]+\\.[0-9]+)", file)[1])
                 epoch = float(
                     re.search("_([0-9]+\\.[0-9]+)\\.csv", file)[1])
                 df = pd.read_csv(inject_dir + file,
                                  float_precision='round_trip',
                                  sep=',',
                                  usecols=['#time', 'flux', 'flux_err'])
                 if len(df) == 0:
                     found = True
                     snr = 20
                     sde = 20
                     run = 1
                 else:
                     lc = lk.LightCurve(time=df['#time'],
                                        flux=df['flux'],
                                        flux_err=df['flux_err'])
                     clean = lc.remove_nans().remove_outliers(
                         sigma_lower=float('inf'),
                         sigma_upper=3)  # remove outliers over 3sigma
                     flux = clean.flux
                     time = clean.time
                     intransit = self.__transit_masks(known_transits, time)
                     found, snr, sde, run = self.__tls_search(
                         time, flux, radius, rstar_min, rstar_max, mass,
                         mstar_min, mstar_max, intransit, epoch, period,
                         0.5, 45, 5, cores, "default")
                 new_report = {
                     "period": period,
                     "radius": r_planet,
                     "epoch": epoch,
                     "found": found,
                     "snr": snr,
                     "sde": sde,
                     "run": run
                 }
                 reports_df = reports_df.append(new_report,
                                                ignore_index=True)
                 print("P=" + str(period) + ", R=" + str(r_planet) +
                       ", T0=" + str(epoch) + ", FOUND WAS " + str(found) +
                       " WITH SNR " + str(snr) + " AND SDE " + str(sde))
                 reports_df.to_csv(inject_dir + "a_tls_report.csv",
                                   index=False)
             except Exception as e:
                 traceback.print_exc()
                 print("File not valid: " + file)
     if not simplified:
         report = {}
         reports_df = pd.DataFrame(columns=[
             'period', 'radius', 'epoch', 'found', 'snr', 'sde', 'run'
         ])
         a = False
         tls_report_df = pd.read_csv(
             inject_dir + "a_tls_report.csv",
             float_precision='round_trip',
             sep=',',
             usecols=['period', 'radius', 'epoch', 'found', 'snr', 'run'])
         samples_analysed = sherlock_samples
         for index, row in tls_report_df[::-1].iterrows():
             file = os.path.join('P' + str(row['period']) + '_R' +
                                 str(row['radius']) + '_' +
                                 str(row['epoch']) + '.csv')
             first_false = index > 0 and tls_report_df.iloc[index - 1]['found'] and \
                         not tls_report_df.iloc[index]['found']
             if first_false:
                 samples_analysed = 0
             elif tls_report_df.iloc[index]['found']:
                 samples_analysed = sherlock_samples
             if samples_analysed < sherlock_samples:
                 try:
                     samples_analysed = samples_analysed + 1
                     period = float(
                         re.search("P([0-9]+\\.[0-9]+)", file)[1])
                     r_planet = float(
                         re.search("R([0-9]+\\.[0-9]+)", file)[1])
                     epoch = float(
                         re.search("_([0-9]+\\.[0-9]+)\\.csv", file)[1])
                     signal_selection_algorithm = QuorumSnrBorderCorrectedStopWhenMatchSignalSelector(
                         1, 0, period, epoch)
                     df = pd.read_csv(inject_dir + file,
                                      float_precision='round_trip',
                                      sep=',',
                                      usecols=['#time', 'flux', 'flux_err'])
                     if len(df) == 0:
                         found = True
                         snr = 20
                         sde = 20
                         run = 1
                     else:
                         sherlock.Sherlock(sherlock_targets=[MissionInputObjectInfo(self.id, inject_dir + file)]) \
                             .setup_detrend(True, True, 1.5, 4, 12, "biweight", 0.2, 1.0, 20, False,
                                            0.25, "cosine", None) \
                             .setup_transit_adjust_params(5, None, None, 10, None, None, 0.4, 14, 10,
                                                          20, 5, 5.5, 0.05, "mask", "quorum", 1, 0,
                                                          signal_selection_algorithm) \
                             .run()
                         df = pd.read_csv(self.id.replace(" ", "") +
                                          "_INP/candidates.csv",
                                          float_precision='round_trip',
                                          sep=',',
                                          usecols=[
                                              'curve', 'period', 't0',
                                              'run', 'snr', 'sde', 'rad_p',
                                              'transits'
                                          ])
                         snr = df["snr"].iloc[len(df) - 1]
                         run = df["run"].iloc[len(df) - 1]
                         sde = df["sde"].iloc[len(df) - 1]
                         per_run = 0
                         found_period = False
                         j = 0
                         for per in df["period"]:
                             if signal_selection_algorithm.is_harmonic(
                                     per, period / 2.):
                                 found_period = True
                                 t0 = df["t0"].iloc[j]
                                 break
                             j = j + 1
                         right_epoch = False
                         if found_period:
                             for i in range(-5, 5):
                                 right_epoch = right_epoch or (
                                     np.abs(t0 - epoch + i * period) <
                                     (1. / 24.))
                                 if right_epoch:
                                     snr = df["snr"].iloc[j]
                                     run = df["run"].iloc[j]
                                     sde = df["sde"].iloc[j]
                                     break
                         found = right_epoch
                     new_report = {
                         "period": period,
                         "radius": r_planet,
                         "epoch": epoch,
                         "found": found,
                         "sde": sde,
                         "snr": snr,
                         "run": int(run)
                     }
                     reports_df = reports_df.append(new_report,
                                                    ignore_index=True)
                     reports_df.to_csv(inject_dir + "a_sherlock_report.csv",
                                       index=False)
                     print("P=" + str(period) + ", R=" + str(r_planet) +
                           ", T0=" + str(epoch) + ", FOUND WAS " +
                           str(found) + " WITH SNR " + str(snr) +
                           "and SDE " + str(sde))
                 except Exception as e:
                     print(e)
                     print("File not valid: " + file)