Esempio n. 1
0
 def world_xyz_images_from_dodeca(self):
   """The world-space XYZ image derived from the 20 Dodeca images."""
   if not hasattr(self, '_world_xyz_images_from_dodeca'):
     world_images = []
     for i in range(20):
       im_i = geom_util_np.apply_4x4(
           self.cam_xyz_images_from_dodeca[i, ...],
           self.dodeca_cam2world[i, ...],
           are_points=True)
       mask = np_util.make_mask(self.depth_images[0, i, ...])
       world_images.append(np_util.zero_by_mask(mask, im_i).astype(np.float32))
     self._world_xyz_images_from_dodeca = np.stack(world_images)
   return self._world_xyz_images_from_dodeca
Esempio n. 2
0
 def r2n2_xyz_images(self):
   """The GT R2N2 XYZ images in world space."""
   if not hasattr(self, '_r2n2_xyz_images'):
     xyz_images = []
     for i in range(24):
       im_i = geom_util_np.apply_4x4(
           self.r2n2_cam_images[i, ...],
           self.r2n2_cam2world[i, ...],
           are_points=True)
       mask = np_util.make_mask(self.r2n2_depth_images[i, ...])
       xyz_images.append(np_util.zero_by_mask(mask, im_i).astype(np.float32))
     self._r2n2_xyz_images = np.stack(xyz_images)
   return self._r2n2_xyz_images
Esempio n. 3
0
def transform_r2n2_depth_image_to_gaps_frame(depth_im, idx, e):
  """Transforms a depth image predicted in the r2n2 space to the GAPS space."""
  # depth_im = self.r2n2_depth_images[idx, ...]
  # TODO(kgenova) Add support for predicted extrinsics.
  is_valid = depth_im != 0.0
  is_valid = np.reshape(is_valid, [224, 224])

  # Depth2cam:
  cam_im = gaps_depth_image_to_cam_image(depth_im, e.r2n2_xfov[idx])
  # Cam2world
  xyz_im = geom_util_np.apply_4x4(
      cam_im, e.r2n2_cam2world[idx, ...], are_points=True)
  mask = np_util.make_mask(depth_im)
  xyz_im = np_util.zero_by_mask(mask, xyz_im).astype(np.float32)
  return xyz_im
Esempio n. 4
0
 def r2n2_normal_cam_images(self):
   """The from-depth GAPS-predicted R2N2 normal images in camera space."""
   if not hasattr(self, '_r2n2_normal_cam_images'):
     nrm_world = self.r2n2_normal_world_images
     cam2world = self.r2n2_cam2world.copy()
     cam_images = []
     for i in range(24):
       # Use the inverse-transpose of the needed matrix:
       im_i = geom_util_np.apply_4x4(
           nrm_world[i, ...], cam2world[i, :, :].T, are_points=False)
       nrm = np.linalg.norm(im_i, axis=-1, keepdims=True) + 1e-10
       im_i /= nrm
       mask = np_util.make_mask(self.r2n2_depth_images[i, ...])
       cam_images.append(np_util.zero_by_mask(mask, im_i).astype(np.float32))
     self._r2n2_normal_cam_images = np.stack(cam_images)
   return self._r2n2_normal_cam_images
Esempio n. 5
0
def compute_argmax_image(xyz_image, decoder, embedding, k=1):
  """Uses the world space XYZ image to compute the maxblob influence image."""
  mask = np_util.make_pixel_mask(xyz_image)  # TODO(kgenova) Figure this out...
  assert len(mask.shape) == 2
  flat_xyz = np.reshape(xyz_image, [-1, 3])
  influences = decoder.rbf_influence_at_samples(embedding, flat_xyz)
  assert len(influences.shape) == 2
  rbf_image = np.reshape(influences, list(mask.shape) + [-1])
  # argmax_image = np.expand_dims(np.argmax(rbf_image, axis=-1), axis=-1)
  argmax_image = np.flip(np.argsort(rbf_image, axis=-1), axis=-1)
  argmax_image = argmax_image[..., :k]
  # TODO(kgenova) Insert an equivalence class map here.
  log.info(mask.shape)
  log.info(argmax_image.shape)
  argmax_image = np_util.zero_by_mask(mask, argmax_image, replace_with=-1)
  log.info(argmax_image.shape)
  return argmax_image.astype(np.int32)
Esempio n. 6
0
 def world_normal_images(self):
   """Normal images transformed to world space."""
   if not hasattr(self, '_world_normal_images'):
     cam_normals = self.cam_normal_images.copy()
     cam2world = self.dodeca_cam2world.copy()
     world_normals = []
     for i in range(20):
       im_i = cam_normals[i, ...]
       # Normals are transformed by the inverse transpose
       cam2world_invt = np.linalg.inv(cam2world[i, ...]).T
       im_i = geom_util_np.apply_4x4(im_i, cam2world_invt, are_points=False)
       nrm = np.linalg.norm(im_i, axis=-1, keepdims=True) + 1e-10
       im_i /= nrm
       mask = np_util.make_mask(self.depth_images[0, i, ...])
       world_normals.append(
           np_util.zero_by_mask(mask, im_i).astype(np.float32))
     self._world_normal_images = np.stack(world_normals)
   return self._world_normal_images