Esempio n. 1
0
 def __init__(self):
     super(ImgEnv, self).__init__()
     self.Nm = str()
     self.SetTags("Nm", 'desc:"name of this environment"')
     self.Dsc = str()
     self.SetTags("Dsc", 'desc:"description of this environment"')
     self.ImageFiles = []
     self.SetTags("ImageFiles", 'desc:"paths to images"')
     self.Images = []
     self.SetTags("Images", 'desc:"images (preload for speed)"')
     self.ImageIdx = env.CurPrvInt()
     self.SetTags("ImageIdx", 'desc:"current image index"')
     self.Vis = Vis()
     self.SetTags("Vis", 'desc:"visual processing params"')
     self.XFormRand = vxform.Rand()
     self.SetTags("XFormRand", 'desc:"random transform parameters"')
     self.XForm = vxform.XForm()
     self.SetTags("XForm", 'desc:"current -- prev transforms"')
     self.Run = env.Ctr()
     self.SetTags(
         "Run",
         'view:"inline" desc:"current run of model as provided during Init"'
     )
     self.Epoch = env.Ctr()
     self.SetTags(
         "Epoch",
         'view:"inline" desc:"number of times through Seq.Max number of sequences"'
     )
     self.Trial = env.Ctr()
     self.SetTags(
         "Trial",
         'view:"inline" desc:"trial is the step counter within epoch"')
     self.OrigImg = etensor.Float32()
     self.SetTags("OrigImg",
                  'desc:"original image prior to random transforms"')
Esempio n. 2
0
 def __init__(self):
     super(ProbeEnv, self).__init__()
     self.Nm = str()
     self.SetTags("Nm", 'desc:"name of this environment"')
     self.Dsc = str()
     self.SetTags("Dsc", 'desc:"description of this environment"')
     self.Words = go.Slice_string()
     self.SetTags(
         "Words",
         'desc:"list of words used for activating state units according to index"'
     )
     self.WordState = etensor.Float32()
     self.SetTags("WordState", 'desc:"current sentence activation state"')
     self.Run = env.Ctr()
     self.SetTags(
         "Run",
         'view:"inline" desc:"current run of model as provided during Init"'
     )
     self.Epoch = env.Ctr()
     self.SetTags(
         "Epoch",
         'view:"inline" desc:"number of times through Seq.Max number of sequences"'
     )
     self.Trial = env.Ctr()
     self.SetTags(
         "Trial",
         'view:"inline" desc:"trial is the step counter within sequence - how many steps taken within current sequence -- it resets to 0 at start of each sequence"'
     )
Esempio n. 3
0
 def __init__(self):
     super(SIREnv, self).__init__()
     self.Nm = str()
     self.SetTags("Nm", 'desc:"name of this environment"')
     self.Dsc = str()
     self.SetTags("Dsc", 'desc:"description of this environment"')
     self.NStim = int(4)
     self.SetTags("NStim", 'desc:"number of different stimuli that can be maintained"')
     self.RewVal = float(1)
     self.SetTags("RewVal", 'desc:"value for reward, based on whether model output = target"')
     self.NoRewVal = float(0)
     self.SetTags("NoRewVal", 'desc:"value for non-reward"')
     self.Act = Actions.Store
     self.SetTags("Act", 'desc:"current action"')
     self.Stim = int()
     self.SetTags("Stim", 'desc:"current stimulus"')
     self.Maint = int()
     self.SetTags("Maint", 'desc:"current stimulus being maintained"')
     self.Input = etensor.Float64()
     self.SetTags("Input", 'desc:"input pattern with action + stim"')
     self.Output = etensor.Float64()
     self.SetTags("Output", 'desc:"output pattern of what to respond"')
     self.Reward = etensor.Float64()
     self.SetTags("Reward", 'desc:"reward value"')
     self.Run = env.Ctr()
     self.SetTags("Run", 'view:"inline" desc:"current run of model as provided during Init"')
     self.Epoch = env.Ctr()
     self.SetTags("Epoch", 'view:"inline" desc:"number of times through Seq.Max number of sequences"')
     self.Trial = env.Ctr()
     self.SetTags("Trial", 'view:"inline" desc:"trial is the step counter within epoch"')
Esempio n. 4
0
 def __init__(self):
     super(CondEnv, self).__init__()
     self.Nm = str()
     self.SetTags("Nm", 'desc:"name of this environment"')
     self.Dsc = str()
     self.SetTags("Dsc", 'desc:"description of this environment"')
     self.TotTime = int()
     self.SetTags("TotTime", 'desc:"total time for trial"')
     self.CSA = OnOff()
     self.SetTags(
         "CSA", 'view:"inline" desc:"Conditioned stimulus A (e.g., Tone)"')
     self.CSB = OnOff()
     self.SetTags(
         "CSB", 'view:"inline" desc:"Conditioned stimulus B (e.g., Light)"')
     self.CSC = OnOff()
     self.SetTags("CSC", 'view:"inline" desc:"Conditioned stimulus C"')
     self.US = OnOff()
     self.SetTags("US",
                  'view:"inline" desc:"Unconditioned stimulus -- reward"')
     self.RewVal = float()
     self.SetTags("RewVal", 'desc:"value for reward"')
     self.NoRewVal = float()
     self.SetTags("NoRewVal", 'desc:"value for non-reward"')
     self.Input = etensor.Float64()
     self.SetTags("Input",
                  'desc:"one-hot input representation of current option"')
     self.Reward = etensor.Float64()
     self.SetTags("Reward", 'desc:"single reward value"')
     self.Run = env.Ctr()
     self.SetTags(
         "Run",
         'view:"inline" desc:"current run of model as provided during Init"'
     )
     self.Epoch = env.Ctr()
     self.SetTags(
         "Epoch",
         'view:"inline" desc:"number of times through Seq.Max number of sequences"'
     )
     self.Trial = env.Ctr()
     self.SetTags(
         "Trial",
         'view:"inline" desc:"one trial is a pass through all TotTime Events"'
     )
     self.Event = env.Ctr()
     self.SetTags(
         "Event",
         'view:"inline" desc:"event is one time step within Trial -- e.g., CS turning on, etc"'
     )
Esempio n. 5
0
 def __init__(self):
     super(LEDEnv, self).__init__()
     self.Nm = str()
     self.SetTags("Nm", 'desc:"name of this environment"')
     self.Dsc = str()
     self.SetTags("Dsc", 'desc:"description of this environment"')
     self.Draw = LEDraw()
     self.SetTags("Draw", 'desc:"draws LEDs onto image"')
     self.Vis = Vis()
     self.SetTags("Vis", 'desc:"visual processing params"')
     self.MinLED = int()
     self.SetTags(
         "MinLED",
         'min:"0" max:"19" desc:"minimum LED number to draw (0-19)"')
     self.MaxLED = int()
     self.SetTags(
         "MaxLED",
         'min:"0" max:"19" desc:"maximum LED number to draw (0-19)"')
     self.CurLED = int()
     self.SetTags("CurLED",
                  'inactive:"+" desc:"current LED number that was drawn"')
     self.PrvLED = int()
     self.SetTags("PrvLED",
                  'inactive:"+" desc:"previous LED number that was drawn"')
     self.XFormRand = vxform.Rand()
     self.SetTags("XFormRand", 'desc:"random transform parameters"')
     self.XForm = vxform.XForm()
     self.SetTags("XForm", 'desc:"current -- prev transforms"')
     self.Run = env.Ctr()
     self.SetTags(
         "Run",
         'view:"inline" desc:"current run of model as provided during Init"'
     )
     self.Epoch = env.Ctr()
     self.SetTags(
         "Epoch",
         'view:"inline" desc:"number of times through Seq.Max number of sequences"'
     )
     self.Trial = env.Ctr()
     self.SetTags(
         "Trial",
         'view:"inline" desc:"trial is the step counter within epoch"')
     self.OrigImg = etensor.Float32()
     self.SetTags("OrigImg",
                  'desc:"original image prior to random transforms"')
     self.Output = etensor.Float32()
     self.SetTags("Output", 'desc:"CurLED one-hot output tensor"')
Esempio n. 6
0
 def __init__(self):
     super(SemEnv, self).__init__()
     self.Nm = str()
     self.SetTags("Nm", 'desc:"name of this environment"')
     self.Dsc = str()
     self.SetTags("Dsc", 'desc:"description of this environment"')
     self.Sequential = False
     self.SetTags(
         "Sequential",
         'desc:"if true, go sequentially through paragraphs -- else permuted"'
     )
     self.Order = go.Slice_int()
     self.SetTags(
         "Order",
         'desc:"permuted order of paras to present if not sequential -- updated every time through the list"'
     )
     self.TextFiles = []
     self.SetTags("TextFiles", 'desc:"paths to text files"')
     self.Words = go.Slice_string()
     self.SetTags("Words", 'desc:"list of words, in alpha order"')
     self.WordMap = {}
     self.SetTags("WordMap",
                  'view:"-" desc:"map of words onto index in Words list"')
     self.CurParaState = etensor.Float32()
     self.SetTags("CurParaState", 'desc:"current para activation state"')
     self.Paras = []
     self.SetTags("Paras", 'view:"-" desc:"paragraphs"')
     self.ParaLabels = []
     self.SetTags(
         "ParaLabels",
         'view:"-" desc:"special labels for each paragraph (provided in first word of para)"'
     )
     self.Run = env.Ctr()
     self.SetTags(
         "Run",
         'view:"inline" desc:"current run of model as provided during Init"'
     )
     self.Epoch = env.Ctr()
     self.SetTags(
         "Epoch",
         'view:"inline" desc:"number of times through Seq.Max number of sequences"'
     )
     self.Trial = env.Ctr()
     self.SetTags(
         "Trial",
         'view:"inline" desc:"trial is the step counter within epoch -- this is the index into Paras"'
     )
Esempio n. 7
0
 def __init__(self):
     super(BanditEnv, self).__init__()
     self.Nm = str()
     self.SetTags("Nm", 'desc:"name of this environment"')
     self.Dsc = str()
     self.SetTags("Dsc", 'desc:"description of this environment"')
     self.N = int()
     self.SetTags("N", 'desc:"number of different inputs"')
     self.P = []
     self.SetTags("P",
                  'desc:"no-inline" desc:"probabilities for each option"')
     self.RewVal = float(1)
     self.SetTags("RewVal", 'desc:"value for reward"')
     self.NoRewVal = float(-1)
     self.SetTags("NoRewVal", 'desc:"value for non-reward"')
     self.Option = env.CurPrvInt()
     self.SetTags("Option", 'desc:"bandit option current / prev"')
     self.RndOpt = True
     self.SetTags(
         "RndOpt",
         'desc:"if true, select option at random each Step -- otherwise must be set externally (e.g., by model)"'
     )
     self.Input = etensor.Float64()
     self.SetTags("Input",
                  'desc:"one-hot input representation of current option"')
     self.Reward = etensor.Float64()
     self.SetTags("Reward", 'desc:"single reward value"')
     self.Run = env.Ctr()
     self.SetTags(
         "Run",
         'view:"inline" desc:"current run of model as provided during Init"'
     )
     self.Epoch = env.Ctr()
     self.SetTags(
         "Epoch",
         'view:"inline" desc:"number of times through Seq.Max number of sequences"'
     )
     self.Trial = env.Ctr()
     self.SetTags(
         "Trial",
         'view:"inline" desc:"trial is the step counter within epoch"')
Esempio n. 8
0
 def __init__(self):
     super(SentGenEnv, self).__init__()
     self.Nm = str()
     self.SetTags("Nm", 'desc:"name of this environment"')
     self.Dsc = str()
     self.SetTags("Dsc", 'desc:"description of this environment"')
     self.Rules = esg.Rules()
     self.SetTags(
         "Rules",
         'desc:"core sent-gen rules -- loaded from a grammar / rules file -- Gen() here generates one sentence"'
     )
     self.PPassive = float()
     self.SetTags(
         "PPassive",
         'desc:"probability of generating passive sentence forms"')
     self.WordTrans = {}
     self.SetTags(
         "WordTrans",
         'desc:"translate unambiguous words into ambiguous words"')
     self.Words = go.Slice_string()
     self.SetTags(
         "Words",
         'desc:"list of words used for activating state units according to index"'
     )
     self.WordMap = {}
     self.SetTags("WordMap", 'desc:"map of words onto index in Words list"')
     self.Roles = []
     self.SetTags(
         "Roles",
         'desc:"list of roles used for activating state units according to index"'
     )
     self.RoleMap = {}
     self.SetTags("RoleMap", 'desc:"map of roles onto index in Roles list"')
     self.Fillers = []
     self.SetTags(
         "Fillers",
         'desc:"list of filler concepts used for activating state units according to index"'
     )
     self.FillerMap = {}
     self.SetTags("FillerMap",
                  'desc:"map of roles onto index in Words list"')
     self.AmbigVerbs = []
     self.SetTags("AmbigVerbs", 'desc:"ambiguous verbs"')
     self.AmbigNouns = []
     self.SetTags("AmbigNouns", 'desc:"ambiguous nouns"')
     self.AmbigVerbsMap = {}
     self.SetTags("AmbigVerbsMap", 'desc:"map of ambiguous verbs"')
     self.AmbigNounsMap = {}
     self.SetTags("AmbigNounsMap", 'desc:"map of ambiguous nouns"')
     self.CurSentOrig = []
     self.SetTags(
         "CurSentOrig",
         'desc:"original current sentence as generated from Rules"')
     self.CurSent = []
     self.SetTags(
         "CurSent",
         'desc:"current sentence, potentially transformed to passive form"')
     self.NAmbigNouns = int()
     self.SetTags("NAmbigNouns", 'desc:"number of ambiguous nouns"')
     self.NAmbigVerbs = int()
     self.SetTags("NAmbigVerbs",
                  'desc:"number of ambiguous verbs (0 or 1)"')
     self.SentInputs = []
     self.SetTags(
         "SentInputs",
         'desc:"generated sequence of sentence inputs including role-filler queries"'
     )
     self.SentIdx = env.CurPrvInt()
     self.SetTags("SentIdx", 'desc:"current index within sentence inputs"')
     self.QType = str()
     self.SetTags(
         "QType",
         'desc:"current question type -- from 4th value of SentInputs"')
     self.WordState = etensor.Float32()
     self.SetTags("WordState", 'desc:"current sentence activation state"')
     self.RoleState = etensor.Float32()
     self.SetTags("RoleState", 'desc:"current role query activation state"')
     self.FillerState = etensor.Float32()
     self.SetTags("FillerState",
                  'desc:"current filler query activation state"')
     self.Run = env.Ctr()
     self.SetTags(
         "Run",
         'view:"inline" desc:"current run of model as provided during Init"'
     )
     self.Epoch = env.Ctr()
     self.SetTags(
         "Epoch",
         'view:"inline" desc:"number of times through Seq.Max number of sequences"'
     )
     self.Seq = env.Ctr()
     self.SetTags("Seq",
                  'view:"inline" desc:"sequence counter within epoch"')
     self.Tick = env.Ctr()
     self.SetTags("Tick",
                  'view:"inline" desc:"tick counter within sequence"')
     self.Trial = env.Ctr()
     self.SetTags(
         "Trial",
         'view:"inline" desc:"trial is the step counter within sequence - how many steps taken within current sequence -- it resets to 0 at start of each sequence"'
     )