Esempio n. 1
0
    def __init__(self, name, channels_in=32, map_size_px=32, *inputs):
        super(GoalAuxiliary2D, self).__init__(name, *inputs)
        self.gather_2d = Gather2D()

        self.map_size_px = map_size_px
        self.channels_in = channels_in
        self.goal_linear = nn.Linear(channels_in, 2)
        enable_weight_saving(self.goal_linear, "aux_goal_linear_" + name)
        self.loss = nn.CrossEntropyLoss()
        self.accuracy_meter = MovingAverageMeter(10)
Esempio n. 2
0
    def __init__(self, name, feature_vec_len=32, num_classes=64, dropout=0, *inputs):
        super(ClassAuxiliary2D, self).__init__(name, *inputs)
        self.gather_2d = Gather2D()
        self.channels_in = feature_vec_len
        self.dropout = nn.Dropout(dropout)
        self.num_classes = num_classes

        self.cls_linear = nn.Linear(feature_vec_len, num_classes)
        enable_weight_saving(self.cls_linear, "aux_class_linear_2d_" + name)
        self.loss = nn.CrossEntropyLoss()
        if self.name == "aux_grounding_map":
            self.loss.weight = torch.tensor([0.5, 0.5])
        self.meter_accuracy = MovingAverageMeter(10)
 def __init__(self, name, world_size_px, *inputs):
     super(VisitationConfidenceAuxiliary, self).__init__(name, *inputs)
     self.loss = nn.BCEWithLogitsLoss(reduction="sum")
     self.world_size_px = world_size_px
     self.acc_threshold = float(self.world_size_px) / 10
     #self.loss = nn.CrossEntropyLoss()
     self.meter_accuracy = MovingAverageMeter(10)
Esempio n. 4
0
    def __init__(self,
                 name,
                 feature_vec_len=32,
                 num_classes=2,
                 num_outputs=1,
                 *inputs):
        super(ClassAuxiliary, self).__init__(name, *inputs)
        self.channels_in = feature_vec_len
        self.num_classes = num_classes
        self.num_outputs = num_outputs

        self.cls_linear = nn.Linear(feature_vec_len, num_classes * num_outputs)
        enable_weight_saving(self.cls_linear, "aux_class_linear_" + name)

        self.loss = nn.CrossEntropyLoss()
        self.meter_accuracy = MovingAverageMeter(10)
Esempio n. 5
0
    def __init__(self, run_name=""):

        super(PVN_Stage1_Critic, self).__init__()
        self.model_name = "pvn_stage1_critic"
        self.run_name = run_name
        self.writer = LoggingSummaryWriter(
            log_dir=f"{get_logging_dir()}/runs/{run_name}/{self.model_name}")

        self.params = get_current_parameters()["ModelCritic"]
        nc = self.params["feature_channels"]
        ndf = self.params["critic_channels"]
        self.grad_penalty_weight = self.params["grad_penalty_weight"]
        self.clip_value = self.params["clip_value"]

        self.env_id_range = self.params.get('env_id_range', None)

        # if True, remove batch normalization
        self.improved = True
        # TODO: try more sophisticated networks.
        # Indeed network cannot be too strong because of Wasserstein GAN property

        self.main = nn.Sequential(
            # input is (nc) x 18 x 32
            nn.Conv2d(in_channels=nc,
                      out_channels=ndf,
                      kernel_size=4,
                      stride=2,
                      padding=1,
                      bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 9 x 16
            nn.Conv2d(in_channels=ndf,
                      out_channels=ndf * 2,
                      kernel_size=4,
                      stride=2,
                      padding=1,
                      bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 4 x 8
            nn.Conv2d(in_channels=ndf * 2,
                      out_channels=ndf * 2,
                      kernel_size=4,
                      stride=2,
                      padding=1,
                      bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 2 x 4
            nn.Conv2d(in_channels=ndf * 2,
                      out_channels=ndf * 4,
                      kernel_size=4,
                      stride=2,
                      padding=1,
                      bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 1 x 2
        )

        self.regressor = nn.Linear((ndf * 4) * 2, 1)

        self.goal_acc_meter = MovingAverageMeter(10)
Esempio n. 6
0
class ClassAuxiliary(AuxiliaryObjective):
    def __init__(self,
                 name,
                 feature_vec_len=32,
                 num_classes=2,
                 num_outputs=1,
                 *inputs):
        super(ClassAuxiliary, self).__init__(name, *inputs)
        self.channels_in = feature_vec_len
        self.num_classes = num_classes
        self.num_outputs = num_outputs

        self.cls_linear = nn.Linear(feature_vec_len, num_classes * num_outputs)
        enable_weight_saving(self.cls_linear, "aux_class_linear_" + name)

        self.loss = nn.CrossEntropyLoss()
        self.meter_accuracy = MovingAverageMeter(10)

    def cuda(self, device=None):
        AuxiliaryObjective.cuda(self, device)
        return self

    def forward(self, fvectors, labels):

        fvectors = torch.cat(fvectors, dim=0)
        labels = torch.cat(labels, dim=0)

        pred = self.cls_linear(fvectors)

        # If we're predicting multiple outputs for each input, reshape accordingly.
        pred = pred.view([-1, self.num_classes])
        labels = labels.view([-1])

        loss = self.loss(pred, labels)

        _, maxidx = torch.max(pred, 1)
        correct = torch.sum((maxidx == labels).long()).data.item()
        accuracy = correct / len(labels)

        self.meter_accuracy.put(accuracy)
        log_value(self.name + "/accuracy", self.meter_accuracy.get())

        # TODO: Track accuracy
        return loss, 1
Esempio n. 7
0
class ClassAuxiliary2D(AuxiliaryObjective):
    def __init__(self, name, feature_vec_len=32, num_classes=64, dropout=0, *inputs):
        super(ClassAuxiliary2D, self).__init__(name, *inputs)
        self.gather_2d = Gather2D()
        self.channels_in = feature_vec_len
        self.dropout = nn.Dropout(dropout)
        self.num_classes = num_classes

        self.cls_linear = nn.Linear(feature_vec_len, num_classes)
        enable_weight_saving(self.cls_linear, "aux_class_linear_2d_" + name)
        self.loss = nn.CrossEntropyLoss()
        if self.name == "aux_grounding_map":
            self.loss.weight = torch.tensor([0.5, 0.5])
        self.meter_accuracy = MovingAverageMeter(10)

    def cuda(self, device=None):
        AuxiliaryObjective.cuda(self, device)
        return self

    def plot_pts(self, image, pts):
        """
        :param image: CxHxW image
        :param pts: Nx2 points - (H,W) coords in the image
        :return:
        """
        image = image.cpu().data.numpy()
        image = image.transpose((1, 2, 0))
        pts = pts.cpu().data.numpy()
        image[:, :, 0] = 0.0
        for pt in pts:
            image[pt[0], pt[1], 0] = 1.0

        Presenter().show_image(image[:, :, 0:3], f"aux_class_2d:{self.name}", torch=False, waitkey=1, scale=8)

    def forward(self, images, lm_pos_list_px, lm_indices_list, tensor_store=None):
        """
        :param images:
        :param lm_pos_list_px:
        :param lm_indices_list:
        :param tensor_store: KeyTensorStore where to store computed predictions for visualization and stuff
        :return:
        """

        batch_size = len(images)

        if type(images) == list:
            images = torch.cat(images, dim=0)

        images = self.dropout(images)

        # Take the first N channels if we have more channels available than necessary
        if images.size(1) > self.channels_in:
            images = images[:, 0:self.channels_in, :, :]

        loss_out = None
        accuracy = 0

        # Move the channel dimension to the back to apply the linear layer, and then back forward to the channel slot
        all_predictions = self.cls_linear(images.permute((0, 2, 3, 1))).permute(0, 3, 1, 2)

        if tensor_store is not None:
            tensor_store.keep_inputs(f"{self.name}_predictions", all_predictions)

        for i in range(batch_size):
            # Apply the 2D gather to get a batch of feature vectors extracted at the landmark positions
            pred_i = all_predictions[i:i+1]
            lm_pos_i = lm_pos_list_px[i]
            if lm_pos_i is None:
                break

            # TODO: Very careful! This one flips the lm_pos_i axis and does a conversion
            #if self.world_size_px is not None:
            #    lm_pos_i = pos_m_to_px(lm_pos_i, self.world_size_px).long().unsqueeze(0)
            predictions = self.gather_2d(pred_i, lm_pos_i)

            if DBG and i == batch_size - 1:
                if pred_i.shape[3] > 32:
                    plot_pred = pred_i[0, [0,3,24], :, :]
                else:
                    plot_pred = pred_i[0, 0:3, :, :]

                self.plot_pts(plot_pred, lm_pos_i[0:1])

            #predictions = self.cls_linear(feature_vectors)
            labels = lm_indices_list[i]
            if len(labels.shape) == 0:
                labels = labels.unsqueeze(0)

            # The batch here is over the landmarks visible in the image
            loss = self.loss(predictions, labels)
            if loss_out is None:
                loss_out = loss
            else:
                loss_out += loss

            _, pred_idx = torch.max(predictions.data, 1)
            correct = torch.sum((pred_idx == labels.data).float())
            total = float(len(labels))
            accuracy = (correct / total)

            self.meter_accuracy.put(accuracy)

        #
        if loss_out is None:
            loss_out = 0
        #else:
        #    loss_out /= batch_size
        acc = self.meter_accuracy.get()
        # This acc * batch_size is a hack to get around auxiliary_losses later dividing by batch_size
        return loss_out, {"accuracy": acc * batch_size}, batch_size
Esempio n. 8
0
    def __init__(self, run_name="", model_instance_name=""):

        super(ModelGSMNBiDomain, self).__init__()
        self.model_name = "gsmn_bidomain"
        self.run_name = run_name
        self.name = model_instance_name
        if not self.name:
            self.name = ""
        self.writer = LoggingSummaryWriter(
            log_dir=f"runs/{run_name}/{self.name}")

        self.params = get_current_parameters()["Model"]
        self.aux_weights = get_current_parameters()["AuxWeights"]
        self.use_aux = self.params["UseAuxiliaries"]

        self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE)
        self.iter = nn.Parameter(torch.zeros(1), requires_grad=False)

        self.tensor_store = KeyTensorStore()
        self.aux_losses = AuxiliaryLosses()

        self.rviz = None
        if self.params.get("rviz"):
            self.rviz = RvizInterface(
                base_name="/gsmn/",
                map_topics=["semantic_map", "grounding_map", "goal_map"],
                markerarray_topics=["instruction"])

        # Path-pred FPV model definition
        # --------------------------------------------------------------------------------------------------------------

        self.img_to_features_w = FPVToGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"],
            res_channels=self.params["resnet_channels"],
            map_channels=self.params["feature_channels"],
            img_w=self.params["img_w"],
            img_h=self.params["img_h"],
            cam_h_fov=self.params["cam_h_fov"],
            img_dbg=IMG_DBG)

        self.map_accumulator_w = LeakyIntegratorGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame
        if self.use_aux[
                "grounding_map"] and not self.use_aux["grounding_features"]:
            self.map_processor_a_w = LangFilterMapProcessor(
                embed_size=self.params["emb_size"],
                in_channels=self.params["feature_channels"],
                out_channels=self.params["relevance_channels"],
                spatial=False,
                cat_out=True)
        else:
            self.map_processor_a_w = IdentityMapProcessor(
                source_map_size=self.params["global_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"])

        if self.use_aux["goal_map"]:
            self.map_processor_b_r = LangFilterMapProcessor(
                embed_size=self.params["emb_size"],
                in_channels=self.params["relevance_channels"],
                out_channels=self.params["goal_channels"],
                spatial=self.params["spatial_goal_filter"],
                cat_out=self.params["cat_rel_and_goal"])
        else:
            self.map_processor_b_r = IdentityMapProcessor(
                source_map_size=self.params["local_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"])

        # Common
        # --------------------------------------------------------------------------------------------------------------

        # Sentence Embedding
        self.sentence_embedding = SentenceEmbeddingSimple(
            self.params["word_emb_size"],
            self.params["emb_size"],
            self.params["emb_layers"],
            dropout=0.0)

        self.map_transform_w_to_r = MapTransformerBase(
            source_map_size=self.params["global_map_size"],
            dest_map_size=self.params["local_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])
        self.map_transform_r_to_w = MapTransformerBase(
            source_map_size=self.params["local_map_size"],
            dest_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Output an action given the global semantic map
        if self.params["map_to_action"] == "downsample2":
            self.map_to_action = EgoMapToActionTriplet(
                map_channels=self.params["map_to_act_channels"],
                map_size=self.params["local_map_size"],
                other_features_size=self.params["emb_size"])

        elif self.params["map_to_action"] == "cropped":
            self.map_to_action = CroppedMapToActionTriplet(
                map_channels=self.params["map_to_act_channels"],
                map_size=self.params["local_map_size"])

        # Auxiliary Objectives
        # --------------------------------------------------------------------------------------------------------------

        # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters,
        # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs
        # that have been saved with keep_auxiliary_input() during execution
        if self.use_aux["class_features"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_class", self.params["feature_channels"],
                                 self.params["num_landmarks"],
                                 self.params["dropout"], "fpv_features",
                                 "lm_pos_fpv_features", "lm_indices",
                                 "tensor_store"))
        if self.use_aux["grounding_features"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_ground",
                                 self.params["relevance_channels"], 2,
                                 self.params["dropout"], "fpv_features_g",
                                 "lm_pos_fpv_features", "lm_mentioned",
                                 "tensor_store"))
        if self.use_aux["class_map"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_class_map",
                                 self.params["feature_channels"],
                                 self.params["num_landmarks"],
                                 self.params["dropout"], "map_S_W",
                                 "lm_pos_map", "lm_indices", "tensor_store"))
        if self.use_aux["grounding_map"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_grounding_map",
                                 self.params["relevance_channels"], 2,
                                 self.params["dropout"], "map_R_W",
                                 "lm_pos_map", "lm_mentioned", "tensor_store"))
        if self.use_aux["goal_map"]:
            self.aux_losses.add_auxiliary(
                GoalAuxiliary2D("aux_goal_map", self.params["goal_channels"],
                                self.params["global_map_size"], "map_G_W",
                                "goal_pos_map"))
        # RSS model uses templated data for landmark and side prediction
        if self.use_aux["language"] and self.params["templates"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_lm", self.params["emb_size"],
                               self.params["num_landmarks"], 1,
                               "sentence_embed", "lm_mentioned_tplt"))
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_side", self.params["emb_size"],
                               self.params["num_sides"], 1, "sentence_embed",
                               "side_mentioned_tplt"))
        # CoRL model uses alignment-model groundings
        elif self.use_aux["language"]:
            # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_lm_nl", self.params["emb_size"], 2,
                               self.params["num_landmarks"], "sentence_embed",
                               "lang_lm_mentioned"))
        if self.use_aux["l1_regularization"]:
            self.aux_losses.add_auxiliary(
                FeatureRegularizationAuxiliary2D("aux_regularize_features",
                                                 "l1", "map_S_W"))
            self.aux_losses.add_auxiliary(
                FeatureRegularizationAuxiliary2D("aux_regularize_features",
                                                 "l1", "map_R_W"))

        self.goal_acc_meter = MovingAverageMeter(10)

        self.aux_losses.print_auxiliary_info()

        self.action_loss = ActionLoss()

        self.env_id = None
        self.prev_instruction = None
        self.seq_step = 0
Esempio n. 9
0
class ModelGSMNBiDomain(nn.Module):
    def __init__(self, run_name="", model_instance_name=""):

        super(ModelGSMNBiDomain, self).__init__()
        self.model_name = "gsmn_bidomain"
        self.run_name = run_name
        self.name = model_instance_name
        if not self.name:
            self.name = ""
        self.writer = LoggingSummaryWriter(
            log_dir=f"runs/{run_name}/{self.name}")

        self.params = get_current_parameters()["Model"]
        self.aux_weights = get_current_parameters()["AuxWeights"]
        self.use_aux = self.params["UseAuxiliaries"]

        self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE)
        self.iter = nn.Parameter(torch.zeros(1), requires_grad=False)

        self.tensor_store = KeyTensorStore()
        self.aux_losses = AuxiliaryLosses()

        self.rviz = None
        if self.params.get("rviz"):
            self.rviz = RvizInterface(
                base_name="/gsmn/",
                map_topics=["semantic_map", "grounding_map", "goal_map"],
                markerarray_topics=["instruction"])

        # Path-pred FPV model definition
        # --------------------------------------------------------------------------------------------------------------

        self.img_to_features_w = FPVToGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"],
            res_channels=self.params["resnet_channels"],
            map_channels=self.params["feature_channels"],
            img_w=self.params["img_w"],
            img_h=self.params["img_h"],
            cam_h_fov=self.params["cam_h_fov"],
            img_dbg=IMG_DBG)

        self.map_accumulator_w = LeakyIntegratorGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame
        if self.use_aux[
                "grounding_map"] and not self.use_aux["grounding_features"]:
            self.map_processor_a_w = LangFilterMapProcessor(
                embed_size=self.params["emb_size"],
                in_channels=self.params["feature_channels"],
                out_channels=self.params["relevance_channels"],
                spatial=False,
                cat_out=True)
        else:
            self.map_processor_a_w = IdentityMapProcessor(
                source_map_size=self.params["global_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"])

        if self.use_aux["goal_map"]:
            self.map_processor_b_r = LangFilterMapProcessor(
                embed_size=self.params["emb_size"],
                in_channels=self.params["relevance_channels"],
                out_channels=self.params["goal_channels"],
                spatial=self.params["spatial_goal_filter"],
                cat_out=self.params["cat_rel_and_goal"])
        else:
            self.map_processor_b_r = IdentityMapProcessor(
                source_map_size=self.params["local_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"])

        # Common
        # --------------------------------------------------------------------------------------------------------------

        # Sentence Embedding
        self.sentence_embedding = SentenceEmbeddingSimple(
            self.params["word_emb_size"],
            self.params["emb_size"],
            self.params["emb_layers"],
            dropout=0.0)

        self.map_transform_w_to_r = MapTransformerBase(
            source_map_size=self.params["global_map_size"],
            dest_map_size=self.params["local_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])
        self.map_transform_r_to_w = MapTransformerBase(
            source_map_size=self.params["local_map_size"],
            dest_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Output an action given the global semantic map
        if self.params["map_to_action"] == "downsample2":
            self.map_to_action = EgoMapToActionTriplet(
                map_channels=self.params["map_to_act_channels"],
                map_size=self.params["local_map_size"],
                other_features_size=self.params["emb_size"])

        elif self.params["map_to_action"] == "cropped":
            self.map_to_action = CroppedMapToActionTriplet(
                map_channels=self.params["map_to_act_channels"],
                map_size=self.params["local_map_size"])

        # Auxiliary Objectives
        # --------------------------------------------------------------------------------------------------------------

        # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters,
        # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs
        # that have been saved with keep_auxiliary_input() during execution
        if self.use_aux["class_features"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_class", self.params["feature_channels"],
                                 self.params["num_landmarks"],
                                 self.params["dropout"], "fpv_features",
                                 "lm_pos_fpv_features", "lm_indices",
                                 "tensor_store"))
        if self.use_aux["grounding_features"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_ground",
                                 self.params["relevance_channels"], 2,
                                 self.params["dropout"], "fpv_features_g",
                                 "lm_pos_fpv_features", "lm_mentioned",
                                 "tensor_store"))
        if self.use_aux["class_map"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_class_map",
                                 self.params["feature_channels"],
                                 self.params["num_landmarks"],
                                 self.params["dropout"], "map_S_W",
                                 "lm_pos_map", "lm_indices", "tensor_store"))
        if self.use_aux["grounding_map"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_grounding_map",
                                 self.params["relevance_channels"], 2,
                                 self.params["dropout"], "map_R_W",
                                 "lm_pos_map", "lm_mentioned", "tensor_store"))
        if self.use_aux["goal_map"]:
            self.aux_losses.add_auxiliary(
                GoalAuxiliary2D("aux_goal_map", self.params["goal_channels"],
                                self.params["global_map_size"], "map_G_W",
                                "goal_pos_map"))
        # RSS model uses templated data for landmark and side prediction
        if self.use_aux["language"] and self.params["templates"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_lm", self.params["emb_size"],
                               self.params["num_landmarks"], 1,
                               "sentence_embed", "lm_mentioned_tplt"))
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_side", self.params["emb_size"],
                               self.params["num_sides"], 1, "sentence_embed",
                               "side_mentioned_tplt"))
        # CoRL model uses alignment-model groundings
        elif self.use_aux["language"]:
            # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_lm_nl", self.params["emb_size"], 2,
                               self.params["num_landmarks"], "sentence_embed",
                               "lang_lm_mentioned"))
        if self.use_aux["l1_regularization"]:
            self.aux_losses.add_auxiliary(
                FeatureRegularizationAuxiliary2D("aux_regularize_features",
                                                 "l1", "map_S_W"))
            self.aux_losses.add_auxiliary(
                FeatureRegularizationAuxiliary2D("aux_regularize_features",
                                                 "l1", "map_R_W"))

        self.goal_acc_meter = MovingAverageMeter(10)

        self.aux_losses.print_auxiliary_info()

        self.action_loss = ActionLoss()

        self.env_id = None
        self.prev_instruction = None
        self.seq_step = 0

    def cuda(self, device=None):
        CudaModule.cuda(self, device)
        self.aux_losses.cuda(device)
        self.sentence_embedding.cuda(device)
        self.map_accumulator_w.cuda(device)
        self.map_processor_a_w.cuda(device)
        self.map_processor_b_r.cuda(device)
        self.img_to_features_w.cuda(device)
        self.map_to_action.cuda(device)
        self.action_loss.cuda(device)
        self.map_transform_w_to_r.cuda(device)
        self.map_transform_r_to_w.cuda(device)
        return self

    def steal_cross_domain_modules(self, other_self):
        # TODO: Consider whether to share auxiliary losses, and if so, all of them?
        self.aux_losses = other_self.aux_losses
        self.action_loss = other_self.action_loss

        # TODO: Make sure that none of these things are stateful, or that there are resets after every forward pass
        self.sentence_embedding = other_self.sentence_embedding
        self.map_accumulator_w = other_self.map_accumulator_w
        self.map_processor_a_w = other_self.map_processor_a_w
        self.map_processor_b_r = other_self.map_processor_b_r
        self.map_to_action = other_self.map_to_action

        # We'll have a separate one of these for each domain
        #self.img_to_features_w = other_self.img_to_features_w

        # TODO: Check that statefulness is not an issue in sharing modules
        # These have no parameters so no point sharing
        #self.map_transform_w_to_r = other_self.map_transform_w_to_r
        #self.map_transform_r_to_w = other_self.map_transform_r_to_w

    def both_domain_parameters(self, other_self):
        # This function iterates and yields parameters from this module and the other module, but does not yield
        # shared parameters twice.
        # First yield all of the other module's parameters
        for p in other_self.parameters():
            yield p
        # Then yield all the parameters from the this module that are not shared with the other one
        for p in self.img_to_features_w.parameters():
            yield p
        return

    def get_iter(self):
        return int(self.iter.data[0])

    def inc_iter(self):
        self.iter += 1

    def load_img_feature_weights(self):
        if self.params.get("load_feature_net"):
            filename = self.params.get("feature_net_filename")
            weights = load_pytorch_model(None, filename)
            prefix = self.params.get("feature_net_tensor_name")
            if prefix:
                weights = find_state_subdict(weights, prefix)
            # TODO: This breaks OOP conventions
            self.img_to_features_w.img_to_features.load_state_dict(weights)
            print(
                f"Loaded pretrained weights from file {filename} with prefix {prefix}"
            )

    def init_weights(self):
        self.img_to_features_w.init_weights()
        self.load_img_feature_weights()
        self.map_accumulator_w.init_weights()
        self.sentence_embedding.init_weights()
        self.map_to_action.init_weights()
        self.map_processor_a_w.init_weights()
        self.map_processor_b_r.init_weights()

    def reset(self):
        self.tensor_store.reset()
        self.sentence_embedding.reset()
        self.img_to_features_w.reset()
        self.map_accumulator_w.reset()
        self.map_transform_w_to_r.reset()
        self.map_transform_r_to_w.reset()
        self.load_img_feature_weights()
        self.prev_instruction = None

    def set_env_context(self, context):
        print("Set env context to: " + str(context))
        self.env_id = context["env_id"]

    def save_viz(self, images_in, instruction):
        # Save incoming images
        imsave(
            os.path.join(get_viz_dir_for_rollout(),
                         "fpv_" + str(self.seq_step) + ".png"), images_in)
        #self.tensor_store.keep_input("fpv_img", images_in)
        # Save all of these tensors from the tensor store as images
        save_tensors_as_images(self.tensor_store, [
            "images_w", "fpv_img", "fpv_features", "map_F_W", "map_M_W",
            "map_S_W", "map_R_W", "map_R_R", "map_G_R", "map_G_W"
        ], str(self.seq_step))

        # Save action as image
        action = self.tensor_store.get_inputs_batch(
            "action")[-1].data.cpu().squeeze().numpy()
        action_fname = get_viz_dir_for_rollout() + "action_" + str(
            self.seq_step) + ".png"
        Presenter().save_action(action, action_fname, "")

        instruction_fname = get_viz_dir_for_rollout() + "instruction.txt"
        with open(instruction_fname, "w") as fp:
            fp.write(instruction)

    def get_action(self, state, instruction):
        """
        Given a DroneState (from PomdpInterface) and instruction, produce a numpy 4D action (x, y, theta, pstop)
        :param state: DroneState object with the raw image from the simulator
        :param instruction: Tokenized instruction given the corpus
        #TODO: Absorb corpus within model
        :return:
        """
        # TODO: Simplify this
        self.eval()
        images_np_pure = state.image
        state_np = state.state

        #print("Act: " + debug_untokenize_instruction(instruction))

        images_np = standardize_image(images_np_pure)
        image_fpv = Variable(none_padded_seq_to_tensor([images_np]))
        state = Variable(none_padded_seq_to_tensor([state_np]))
        # Add the batch dimension

        first_step = True
        if instruction == self.prev_instruction:
            first_step = False
        self.prev_instruction = instruction
        instruction_str = debug_untokenize_instruction(instruction)

        # TODO: Move this to PomdpInterface (for now it's here because this is already visualizing the maps)
        if first_step:
            if self.rviz is not None:
                self.rviz.publish_instruction_text(
                    "instruction", debug_untokenize_instruction(instruction))

        img_in_t = image_fpv
        img_in_t.volatile = True

        instr_len = [len(instruction)] if instruction is not None else None
        instruction = torch.LongTensor(instruction).unsqueeze(0)
        instruction = cuda_var(instruction, self.is_cuda, self.cuda_device)

        state.volatile = True

        if self.is_cuda:
            if img_in_t is not None:
                img_in_t = img_in_t.cuda(self.cuda_device)
            state = state.cuda(self.cuda_device)

        step_enc = None
        plan_now = None

        self.seq_step += 1

        action = self(img_in_t,
                      state,
                      instruction,
                      instr_len,
                      plan=plan_now,
                      pos_enc=step_enc)

        passive_mode_debug_projections = True
        if passive_mode_debug_projections:
            self.show_landmark_locations(loop=False, states=state)
            self.reset()

        # Run auxiliary objectives for debugging purposes (e.g. to compute classification predictions)
        if self.params.get("run_auxiliaries_at_test_time"):
            _, _ = self.aux_losses.calculate_aux_loss(self.tensor_store,
                                                      reduce_average=True)
            overlaid = self.get_overlaid_classification_results(
                whole_batch=False)

        # Save materials for analysis and presentation
        if self.params["write_figures"]:
            self.save_viz(images_np_pure, instruction_str)

        output_action = action.squeeze().data.cpu().numpy()
        stop_prob = output_action[3]
        output_stop = 1 if stop_prob > self.params["stop_p"] else 0
        output_action[3] = output_stop

        return output_action

    def get_overlaid_classification_results(self, map_not_features=False):
        if map_not_features:
            predictions_name = "aux_class_map_predictions"
        else:
            predictions_name = "aux_class_predictions"
        predictions = self.tensor_store.get_latest_input(predictions_name)
        if predictions is None:
            return None
        predictions = predictions[0].detach()
        # Get the 3 channels corresponding to no landmark, banana and gorilla
        predictions = predictions[[0, 3, 24], :, :]
        images = self.tensor_store.get_latest_input("images")[0].detach()
        overlaid = Presenter().overlaid_image(images,
                                              predictions,
                                              gray_bg=True)
        return overlaid

    def deterministic_action(self, action_mean, action_std, stop_prob):
        batch_size = action_mean.size(0)
        action = Variable(
            empty_float_tensor((batch_size, 4), self.is_cuda,
                               self.cuda_device))
        action[:, 0:3] = action_mean[:, 0:3]
        action[:, 3] = stop_prob
        return action

    # This is called before beginning an execution sequence
    def start_sequence(self):
        self.seq_step = 0
        self.reset()
        print("RESETTED!")
        return

    # TODO: Move this somewhere and standardize
    def cam_poses_from_states(self, states):
        cam_pos = states[:, 9:12]
        cam_rot = states[:, 12:16]

        pos_variance = 0
        rot_variance = 0
        if self.params.get("use_pos_noise"):
            pos_variance = self.params["noisy_pos_variance"]
        if self.params.get("use_rot_noise"):
            rot_variance = self.params["noisy_rot_variance"]

        pose = Pose(cam_pos, cam_rot)
        if self.params.get("use_pos_noise") or self.params.get(
                "use_rot_noise"):
            pose = get_noisy_poses_torch(pose,
                                         pos_variance,
                                         rot_variance,
                                         cuda=self.is_cuda,
                                         cuda_device=self.cuda_device)
        return pose

    def forward(self,
                images,
                states,
                instructions,
                instr_lengths,
                has_obs=None,
                plan=None,
                save_maps_only=False,
                pos_enc=None,
                noisy_poses=None,
                halfway=False):
        """
        :param images: BxCxHxW batch of images (observations)
        :param states: BxK batch of drone states
        :param instructions: BxM LongTensor where M is the maximum length of any instruction
        :param instr_lengths: list of len B of integers, indicating length of each instruction
        :param has_obs: list of booleans of length B indicating whether the given element in the sequence has an observation
        :param yield_semantic_maps: If true, will not compute actions (full model), but return the semantic maps that
            were built along the way in response to the images. This is ugly, but allows code reuse
        :return:
        """
        cam_poses = self.cam_poses_from_states(states)
        g_poses = None  #[None for pose in cam_poses]
        self.prof.tick("out")

        #str_instr = debug_untokenize_instruction(instructions[0].data[:instr_lengths[0]])
        #print("Trn: " + str_instr)

        # Calculate the instruction embedding
        if instructions is not None:
            # TODO: Take batch of instructions and their lengths, return batch of embeddings. Store the last one as internal state
            sent_embeddings = self.sentence_embedding(instructions,
                                                      instr_lengths)
            self.tensor_store.keep_inputs("sentence_embed", sent_embeddings)
        else:
            sent_embeddings = self.sentence_embedding.get()

        self.prof.tick("embed")

        # Extract and project features onto the egocentric frame for each image
        features_w, coverages_w = self.img_to_features_w(images,
                                                         cam_poses,
                                                         sent_embeddings,
                                                         self.tensor_store,
                                                         show="")

        # If we're running the model halway, return now. This is to compute enough features for the wasserstein critic, but no more
        if halfway:
            return None

        # Don't back-prop into resnet if we're freezing these features (TODO: instead set requires grad to false)
        if self.params.get("freeze_feature_net"):
            features_w = features_w.detach()

        self.prof.tick("img_to_map_frame")
        self.tensor_store.keep_inputs("images", images)
        self.tensor_store.keep_inputs("map_F_w", features_w)
        self.tensor_store.keep_inputs("map_M_w", coverages_w)

        if run_metadata.IS_ROLLOUT:
            Presenter().show_image(features_w.data[0, 0:3],
                                   "F",
                                   torch=True,
                                   scale=8,
                                   waitkey=1)

        # Accumulate the egocentric features in a global map
        maps_s_w = self.map_accumulator_w(features_w,
                                          coverages_w,
                                          add_mask=has_obs,
                                          show="acc" if IMG_DBG else "")
        map_poses_w = g_poses
        self.tensor_store.keep_inputs("map_S_W", maps_s_w)
        self.prof.tick("map_accumulate")

        Presenter().show_image(maps_s_w.data[0],
                               f"{self.name}_S_map_W",
                               torch=True,
                               scale=4,
                               waitkey=1)

        # Do grounding of objects in the map chosen to do so
        maps_r_w, map_poses_r_w = self.map_processor_a_w(maps_s_w,
                                                         sent_embeddings,
                                                         map_poses_w,
                                                         show="")
        self.tensor_store.keep_inputs("map_R_W", maps_r_w)
        Presenter().show_image(maps_r_w.data[0],
                               f"{self.name}_R_map_W",
                               torch=True,
                               scale=4,
                               waitkey=1)
        self.prof.tick("map_proc_gnd")

        # Transform to drone's reference frame
        self.map_transform_w_to_r.set_maps(maps_r_w, map_poses_r_w)
        maps_r_r, map_poses_r_r = self.map_transform_w_to_r.get_maps(cam_poses)
        self.tensor_store.keep_inputs("map_R_R", maps_r_r)
        self.prof.tick("transform_w_to_r")

        # Predict goal location
        maps_g_r, map_poses_g_r = self.map_processor_b_r(
            maps_r_r, sent_embeddings, map_poses_r_r)
        self.tensor_store.keep_inputs("map_G_R", maps_g_r)

        # Transform back to map frame
        self.map_transform_r_to_w.set_maps(maps_g_r, map_poses_g_r)
        maps_g_w, _ = self.map_transform_r_to_w.get_maps(None)
        self.tensor_store.keep_inputs("map_G_W", maps_g_w)
        self.prof.tick("map_proc_b")

        # Show and publish to RVIZ
        Presenter().show_image(maps_g_w.data[0],
                               f"{self.name}_G_map_W",
                               torch=True,
                               scale=8,
                               waitkey=1)
        if self.rviz:
            self.rviz.publish_map(
                "goal_map", maps_g_w[0].data.cpu().numpy().transpose(1, 2, 0),
                self.params["world_size_m"])

        # Output the final action given the processed map
        action_pred = self.map_to_action(maps_g_r, sent_embeddings)
        out_action = self.deterministic_action(action_pred[:, 0:3], None,
                                               action_pred[:, 3])
        self.tensor_store.keep_inputs("action", out_action)
        self.prof.tick("map_to_action")

        return out_action

    # TODO: The below two methods seem to do the same thing
    def maybe_cuda(self, tensor):
        if self.is_cuda:
            return tensor.cuda()
        else:
            return tensor

    def cuda_var(self, tensor):
        return cuda_var(tensor, self.is_cuda, self.cuda_device)

    def unbatch(self, batch):
        # TODO: Carefully consider this line. This is necessary to reset state between batches (e.g. delete all tensors in the tensor store)
        self.reset()
        # Get rid of the batch dimension for everything
        images = self.maybe_cuda(batch["images"])[0]
        seq_len = images.shape[0]
        instructions = self.maybe_cuda(batch["instr"])[0][:seq_len]
        instr_lengths = batch["instr_len"][0]
        states = self.maybe_cuda(batch["states"])[0]
        actions = self.maybe_cuda(batch["actions"])[0]

        # Auxiliary labels
        lm_pos_fpv = batch["lm_pos_fpv"][0]
        lm_pos_map = batch["lm_pos_map"][0]
        lm_indices = batch["lm_indices"][0]
        goal_pos_map = batch["goal_loc"][0]

        # TODO: Get rid of this. We will have lm_mentioned booleans and lm_mentioned_idx integers and that's it.
        TEMPLATES = True
        if TEMPLATES:
            lm_mentioned_tplt = batch["lm_mentioned_tplt"][0]
            side_mentioned_tplt = batch["side_mentioned_tplt"][0]
            side_mentioned_tplt = self.cuda_var(side_mentioned_tplt)
            lm_mentioned_tplt = self.cuda_var(lm_mentioned_tplt)
            lang_lm_mentioned = None
        else:
            lm_mentioned_tplt = None
            side_mentioned_tplt = None
            lang_lm_mentioned = batch["lang_lm_mentioned"][0]
        lm_mentioned = batch["lm_mentioned"][0]
        # This is the first-timestep metadata
        metadata = batch["md"][0]

        lm_pos_map = [
            torch.from_numpy(
                transformations.pos_m_to_px(
                    p.numpy(), self.params["global_map_size"],
                    self.params["world_size_m"], self.params["world_size_px"]))
            if p is not None else None for p in lm_pos_map
        ]

        goal_pos_map = torch.from_numpy(
            transformations.pos_m_to_px(goal_pos_map.numpy(),
                                        self.params["global_map_size"],
                                        self.params["world_size_m"],
                                        self.params["world_size_px"]))

        lm_pos_map = [
            self.cuda_var(s.long()) if s is not None else None
            for s in lm_pos_map
        ]
        lm_pos_fpv_features = [
            self.cuda_var(
                (s /
                 self.img_to_features_w.img_to_features.get_downscale_factor()
                 ).long()) if s is not None else None for s in lm_pos_fpv
        ]
        lm_pos_fpv_img = [
            self.cuda_var(s.long()) if s is not None else None
            for s in lm_pos_fpv
        ]
        lm_indices = [
            self.cuda_var(s) if s is not None else None for s in lm_indices
        ]
        goal_pos_map = self.cuda_var(goal_pos_map)
        if not TEMPLATES:
            lang_lm_mentioned = self.cuda_var(lang_lm_mentioned)
        lm_mentioned = [
            self.cuda_var(s) if s is not None else None for s in lm_mentioned
        ]

        obs_mask = [True for _ in range(seq_len)]
        plan_mask = [True for _ in range(seq_len)]
        pos_enc = None

        # TODO: Figure out how to keep these properly. Perhaps as a whole batch is best
        self.tensor_store.keep_inputs("lm_pos_fpv_img", lm_pos_fpv_img)
        self.tensor_store.keep_inputs("lm_pos_fpv_features",
                                      lm_pos_fpv_features)
        self.tensor_store.keep_inputs("lm_pos_map", lm_pos_map)
        self.tensor_store.keep_inputs("lm_indices", lm_indices)
        self.tensor_store.keep_inputs("goal_pos_map", goal_pos_map)
        if not TEMPLATES:
            self.tensor_store.keep_inputs("lang_lm_mentioned",
                                          lang_lm_mentioned)
        else:
            self.tensor_store.keep_inputs("lm_mentioned_tplt",
                                          lm_mentioned_tplt)
            self.tensor_store.keep_inputs("side_mentioned_tplt",
                                          side_mentioned_tplt)
        self.tensor_store.keep_inputs("lm_mentioned", lm_mentioned)

        # ----------------------------------------------------------------------------
        # Optional Auxiliary Inputs
        # ----------------------------------------------------------------------------
        #if self.aux_losses.input_required("lm_pos_map"):
        self.tensor_store.keep_inputs("lm_pos_map", lm_pos_map)
        #if self.aux_losses.input_required("lm_indices"):
        self.tensor_store.keep_inputs("lm_indices", lm_indices)
        #if self.aux_losses.input_required("lm_mentioned"):
        self.tensor_store.keep_inputs("lm_mentioned", lm_mentioned)

        return images, instructions, instr_lengths, states, actions, \
               lm_pos_fpv_img, lm_pos_fpv_features, lm_pos_map, lm_indices, goal_pos_map, \
               lm_mentioned, lm_mentioned_tplt, side_mentioned_tplt, lang_lm_mentioned, \
               metadata, obs_mask, plan_mask, pos_enc

    def show_landmark_locations(self, loop=True, states=None):
        # Show landmark locations in first-person images
        img_all = self.tensor_store.get("images")
        img_w_all = self.tensor_store.get("images_w")
        import rollout.run_metadata as md
        if md.IS_ROLLOUT:
            # TODO: Discard this and move this to PomdpInterface or something
            # (it's got nothing to do with the model)
            # load landmark positions from configs
            from data_io.env import load_env_config
            from learning.datasets.aux_data_providers import get_landmark_locations_airsim
            from learning.models.semantic_map.pinhole_camera_inv import PinholeCameraProjection
            projector = PinholeCameraProjection(
                map_size_px=self.params["global_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"],
                img_x=self.params["img_w"],
                img_y=self.params["img_h"],
                cam_fov=self.params["cam_h_fov"],
                #TODO: Handle correctly
                domain="sim",
                use_depth=False)
            conf_json = load_env_config(md.ENV_ID)
            landmark_names, landmark_indices, landmark_pos = get_landmark_locations_airsim(
                conf_json)
            cam_poses = self.cam_poses_from_states(states)
            cam_pos = cam_poses.position[0]
            cam_rot = cam_poses.orientation[0]
            lm_pos_map_all = []
            lm_pos_img_all = []
            for i, landmark_in_world in enumerate(landmark_pos):
                lm_pos_img, landmark_in_cam, status = projector.world_point_to_image(
                    cam_pos, cam_rot, landmark_in_world)
                lm_pos_map = torch.from_numpy(
                    transformations.pos_m_to_px(
                        landmark_in_world[np.newaxis, :],
                        self.params["global_map_size"],
                        self.params["world_size_m"],
                        self.params["world_size_px"]))
                lm_pos_map_all += [lm_pos_map[0]]
                if lm_pos_img is not None:
                    lm_pos_img_all += [lm_pos_img]

            lm_pos_img_all = [lm_pos_img_all]
            lm_pos_map_all = [lm_pos_map_all]

        else:
            lm_pos_img_all = self.tensor_store.get("lm_pos_fpv_img")
            lm_pos_map_all = self.tensor_store.get("lm_pos_map")

        print("Plotting landmark points")

        for i in range(len(img_all)):
            p = Presenter()
            overlay_fpv = p.overlay_pts_on_image(img_all[i][0],
                                                 lm_pos_img_all[i])
            overlay_map = p.overlay_pts_on_image(img_w_all[i][0],
                                                 lm_pos_map_all[i])
            p.show_image(overlay_fpv, "landmarks_on_fpv_img", scale=8)
            p.show_image(overlay_map, "landmarks_on_map", scale=20)

            if not loop:
                break

    def calc_tensor_statistics(self, prefix, tensor):
        stats = {}
        stats[f"{prefix}_mean"] = torch.mean(tensor).item()
        stats[f"{prefix}_l2"] = torch.norm(tensor).item()
        stats[f"{prefix}_stddev"] = torch.std(tensor).item()
        return stats

    def get_activation_statistics(self, keys):
        stats = {}
        from utils.dict_tools import dict_merge
        for key in keys:
            t = self.tensor_store.get_inputs_batch(key)
            t_stats = self.calc_tensor_statistics(key, t)
            stats = dict_merge(stats, t_stats)
        return stats

    # Forward pass for training (with batch optimizations
    def sup_loss_on_batch(self, batch, eval, halfway=False):
        self.prof.tick("out")

        action_loss_total = Variable(
            empty_float_tensor([1], self.is_cuda, self.cuda_device))

        if batch is None:
            print("Skipping None Batch")
            return action_loss_total

        images, instructions, instr_lengths, states, action_labels, \
        lm_pos_fpv_img, lm_pos_fpv_features, lm_pos_map, lm_indices, goal_pos_map, \
        lm_mentioned, lm_mentioned_tplt, side_mentioned_tplt, lang_lm_mentioned, \
        metadata, obs_mask, plan_mask, pos_enc = self.unbatch(batch)

        # ----------------------------------------------------------------------------
        self.prof.tick("inputs")

        pred_actions = self(images,
                            states,
                            instructions,
                            instr_lengths,
                            has_obs=obs_mask,
                            plan=plan_mask,
                            pos_enc=pos_enc,
                            halfway=halfway)

        # Debugging landmark locations
        if False:
            self.show_landmark_locations()

        # Don't compute any losses - those will not be used. All we care about are the intermediate activations
        if halfway:
            return None, self.tensor_store

        action_losses, _ = self.action_loss(action_labels,
                                            pred_actions,
                                            batchreduce=False)

        self.prof.tick("call")

        action_losses = self.action_loss.batch_reduce_loss(action_losses)
        action_loss = self.action_loss.reduce_loss(action_losses)

        action_loss_total = action_loss

        self.prof.tick("loss")

        aux_losses, aux_metrics = self.aux_losses.calculate_aux_loss(
            self.tensor_store, reduce_average=True)
        aux_loss = self.aux_losses.combine_losses(aux_losses, self.aux_weights)

        #overlaid = self.get_overlaid_classification_results()
        #Presenter().show_image(overlaid, "classification", scale=2)

        prefix = f"{self.model_name}/{'eval' if eval else 'train'}"
        act_prefix = f"{self.model_name}_activations/{'eval' if eval else 'train'}"

        # Mean, stddev, norm of maps
        act_stats = self.get_activation_statistics(
            ["map_S_W", "map_R_W", "map_G_W"])
        self.writer.add_dict(act_prefix, act_stats, self.get_iter())

        self.writer.add_dict(prefix, get_current_meters(), self.get_iter())
        self.writer.add_dict(prefix, aux_losses, self.get_iter())
        self.writer.add_dict(prefix, aux_metrics, self.get_iter())
        self.writer.add_scalar(prefix + "/action_loss",
                               action_loss_total.data.cpu().item(),
                               self.get_iter())
        # TODO: Log value here
        self.writer.add_scalar(prefix + "/goal_accuracy",
                               self.goal_acc_meter.get(), self.get_iter())

        self.prof.tick("auxiliaries")

        total_loss = action_loss_total + aux_loss

        self.inc_iter()

        self.prof.tick("summaries")
        self.prof.loop()
        self.prof.print_stats(1)

        return total_loss, self.tensor_store

    def get_dataset(self,
                    data=None,
                    envs=None,
                    dataset_names=None,
                    dataset_prefix=None,
                    eval=False):
        # TODO: Maybe use eval here
        #if self.fpv:
        data_sources = []
        # If we're running auxiliary objectives, we need to include the data sources for the auxiliary labels
        #if self.use_aux_class_features or self.use_aux_class_on_map or self.use_aux_grounding_features or self.use_aux_grounding_on_map:
        #if self.use_aux_goal_on_map:
        data_sources.append(aup.PROVIDER_LM_POS_DATA)
        data_sources.append(aup.PROVIDER_GOAL_POS)
        #data_sources.append(aup.PROVIDER_LANDMARKS_MENTIONED)
        data_sources.append(aup.PROVIDER_LANG_TEMPLATE)

        #if self.use_rot_noise or self.use_pos_noise:
        #    data_sources.append(aup.PROVIDER_POSE_NOISE)

        return SegmentDataset(data=data,
                              env_list=envs,
                              dataset_names=dataset_names,
                              dataset_prefix=dataset_prefix,
                              aux_provider_names=data_sources,
                              segment_level=True)
Esempio n. 10
0
    def __init__(self,
                 run_name="",
                 model_class=MODEL_RSS,
                 aux_class_features=False,
                 aux_grounding_features=False,
                 aux_class_map=False,
                 aux_grounding_map=False,
                 aux_goal_map=False,
                 aux_lang=False,
                 aux_traj=False,
                 rot_noise=False,
                 pos_noise=False):

        super(ModelTrajectoryTopDown, self).__init__()
        self.model_name = "sm_trajectory" + str(model_class)
        self.model_class = model_class
        print("Init model of type: ", str(model_class))
        self.run_name = run_name
        self.writer = LoggingSummaryWriter(log_dir="runs/" + run_name)

        self.params = get_current_parameters()["Model"]
        self.aux_weights = get_current_parameters()["AuxWeights"]

        self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE)
        self.iter = nn.Parameter(torch.zeros(1), requires_grad=False)

        self.tensor_store = KeyTensorStore()
        self.aux_losses = AuxiliaryLosses()

        # Auxiliary Objectives
        self.use_aux_class_features = aux_class_features
        self.use_aux_grounding_features = aux_grounding_features
        self.use_aux_class_on_map = aux_class_map
        self.use_aux_grounding_on_map = aux_grounding_map
        self.use_aux_goal_on_map = aux_goal_map
        self.use_aux_lang = aux_lang
        self.use_aux_traj_on_map = aux_traj
        self.use_aux_reg_map = self.aux_weights["regularize_map"]

        self.use_rot_noise = rot_noise
        self.use_pos_noise = pos_noise
        self.rviz = None
        if self.params.get("rviz"):
            self.rviz = RvizInterface(
                base_name="/gsmn/",
                map_topics=["semantic_map", "grounding_map", "goal_map"],
                markerarray_topics=["instruction"])

        # Path-pred FPV model definition
        # --------------------------------------------------------------------------------------------------------------

        self.img_to_features_w = FPVToGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"],
            res_channels=self.params["resnet_channels"],
            map_channels=self.params["feature_channels"],
            img_w=self.params["img_w"],
            img_h=self.params["img_h"],
            cam_h_fov=self.params["cam_h_fov"],
            img_dbg=IMG_DBG)

        self.map_accumulator_w = LeakyIntegratorGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame
        if self.use_aux_grounding_on_map and not self.use_aux_grounding_features:
            self.map_processor_a_w = LangFilterMapProcessor(
                source_map_size=self.params["global_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"],
                embed_size=self.params["emb_size"],
                in_channels=self.params["feature_channels"],
                out_channels=self.params["relevance_channels"],
                spatial=False,
                cat_out=True)
        else:
            self.map_processor_a_w = IdentityMapProcessor(
                source_map_size=self.params["global_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"])

        if self.use_aux_goal_on_map:
            self.map_processor_b_r = LangFilterMapProcessor(
                source_map_size=self.params["local_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"],
                embed_size=self.params["emb_size"],
                in_channels=self.params["relevance_channels"],
                out_channels=self.params["goal_channels"],
                spatial=self.params["spatial_goal_filter"],
                cat_out=self.params["cat_rel_and_goal"])
        else:
            self.map_processor_b_r = IdentityMapProcessor(
                source_map_size=self.params["local_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"])

        # Common
        # --------------------------------------------------------------------------------------------------------------

        # Sentence Embedding
        self.sentence_embedding = SentenceEmbeddingSimple(
            self.params["word_emb_size"], self.params["emb_size"],
            self.params["emb_layers"])

        self.map_transform_w_to_r = MapTransformerBase(
            source_map_size=self.params["global_map_size"],
            dest_map_size=self.params["local_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])
        self.map_transform_r_to_w = MapTransformerBase(
            source_map_size=self.params["local_map_size"],
            dest_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in
        self.batch_select = MapBatchSelect()
        # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill
        # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep
        self.map_batch_fill_missing = MapBatchFillMissing(
            self.params["local_map_size"],
            self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Passing true to freeze will freeze these weights regardless of whether they've been explicitly reloaded or not
        enable_weight_saving(self.sentence_embedding,
                             "sentence_embedding",
                             alwaysfreeze=False)

        # Output an action given the global semantic map
        if self.params["map_to_action"] == "downsample2":
            self.map_to_action = EgoMapToActionTriplet(
                map_channels=self.params["map_to_act_channels"],
                map_size=self.params["local_map_size"],
                other_features_size=self.params["emb_size"])

        elif self.params["map_to_action"] == "cropped":
            self.map_to_action = CroppedMapToActionTriplet(
                map_channels=self.params["map_to_act_channels"],
                map_size=self.params["local_map_size"])

        # Don't freeze the trajectory to action weights, because it will be pre-trained during path-prediction training
        # and finetuned on all timesteps end-to-end
        enable_weight_saving(self.map_to_action,
                             "map_to_action",
                             alwaysfreeze=False,
                             neverfreeze=True)

        # Auxiliary Objectives
        # --------------------------------------------------------------------------------------------------------------

        # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters,
        # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs
        # that have been saved with keep_auxiliary_input() during execution
        if aux_class_features:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_class", self.params["feature_channels"],
                                 self.params["num_landmarks"],
                                 self.params["dropout"], "fpv_features",
                                 "lm_pos_fpv", "lm_indices"))
        if aux_grounding_features:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_ground",
                                 self.params["relevance_channels"], 2,
                                 self.params["dropout"], "fpv_features_g",
                                 "lm_pos_fpv", "lm_mentioned"))
        if aux_class_map:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_class_map",
                                 self.params["feature_channels"],
                                 self.params["num_landmarks"],
                                 self.params["dropout"], "map_s_w_select",
                                 "lm_pos_map_select", "lm_indices_select"))
        if aux_grounding_map:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_grounding_map",
                                 self.params["relevance_channels"], 2,
                                 self.params["dropout"], "map_a_w_select",
                                 "lm_pos_map_select", "lm_mentioned_select"))
        if aux_goal_map:
            self.aux_losses.add_auxiliary(
                GoalAuxiliary2D("aux_goal_map", self.params["goal_channels"],
                                self.params["global_map_size"], "map_b_w",
                                "goal_pos_map"))
        # RSS model uses templated data for landmark and side prediction
        if self.use_aux_lang and self.params["templates"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_lm", self.params["emb_size"],
                               self.params["num_landmarks"], 1,
                               "sentence_embed", "lm_mentioned_tplt"))
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_side", self.params["emb_size"],
                               self.params["num_sides"], 1, "sentence_embed",
                               "side_mentioned_tplt"))
        # CoRL model uses alignment-model groundings
        elif self.use_aux_lang:
            # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_lm_nl", self.params["emb_size"], 2,
                               self.params["num_landmarks"], "sentence_embed",
                               "lang_lm_mentioned"))
        if self.use_aux_traj_on_map:
            self.aux_losses.add_auxiliary(
                PathAuxiliary2D("aux_path", "map_b_r_select",
                                "traj_gt_r_select"))

        if self.use_aux_reg_map:
            self.aux_losses.add_auxiliary(
                FeatureRegularizationAuxiliary2D("aux_regularize_features",
                                                 None, "l1", "map_s_w_select",
                                                 "lm_pos_map_select"))

        self.goal_good_criterion = GoalPredictionGoodCriterion(ok_distance=3.2)
        self.goal_acc_meter = MovingAverageMeter(10)

        self.aux_losses.print_auxiliary_info()

        self.action_loss = ActionLoss()

        self.env_id = None
        self.prev_instruction = None
        self.seq_step = 0
Esempio n. 11
0
class ModelTrajectoryTopDown(nn.Module):
    def __init__(self,
                 run_name="",
                 model_class=MODEL_RSS,
                 aux_class_features=False,
                 aux_grounding_features=False,
                 aux_class_map=False,
                 aux_grounding_map=False,
                 aux_goal_map=False,
                 aux_lang=False,
                 aux_traj=False,
                 rot_noise=False,
                 pos_noise=False):

        super(ModelTrajectoryTopDown, self).__init__()
        self.model_name = "sm_trajectory" + str(model_class)
        self.model_class = model_class
        print("Init model of type: ", str(model_class))
        self.run_name = run_name
        self.writer = LoggingSummaryWriter(log_dir="runs/" + run_name)

        self.params = get_current_parameters()["Model"]
        self.aux_weights = get_current_parameters()["AuxWeights"]

        self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE)
        self.iter = nn.Parameter(torch.zeros(1), requires_grad=False)

        self.tensor_store = KeyTensorStore()
        self.aux_losses = AuxiliaryLosses()

        # Auxiliary Objectives
        self.use_aux_class_features = aux_class_features
        self.use_aux_grounding_features = aux_grounding_features
        self.use_aux_class_on_map = aux_class_map
        self.use_aux_grounding_on_map = aux_grounding_map
        self.use_aux_goal_on_map = aux_goal_map
        self.use_aux_lang = aux_lang
        self.use_aux_traj_on_map = aux_traj
        self.use_aux_reg_map = self.aux_weights["regularize_map"]

        self.use_rot_noise = rot_noise
        self.use_pos_noise = pos_noise
        self.rviz = None
        if self.params.get("rviz"):
            self.rviz = RvizInterface(
                base_name="/gsmn/",
                map_topics=["semantic_map", "grounding_map", "goal_map"],
                markerarray_topics=["instruction"])

        # Path-pred FPV model definition
        # --------------------------------------------------------------------------------------------------------------

        self.img_to_features_w = FPVToGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"],
            res_channels=self.params["resnet_channels"],
            map_channels=self.params["feature_channels"],
            img_w=self.params["img_w"],
            img_h=self.params["img_h"],
            cam_h_fov=self.params["cam_h_fov"],
            img_dbg=IMG_DBG)

        self.map_accumulator_w = LeakyIntegratorGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame
        if self.use_aux_grounding_on_map and not self.use_aux_grounding_features:
            self.map_processor_a_w = LangFilterMapProcessor(
                source_map_size=self.params["global_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"],
                embed_size=self.params["emb_size"],
                in_channels=self.params["feature_channels"],
                out_channels=self.params["relevance_channels"],
                spatial=False,
                cat_out=True)
        else:
            self.map_processor_a_w = IdentityMapProcessor(
                source_map_size=self.params["global_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"])

        if self.use_aux_goal_on_map:
            self.map_processor_b_r = LangFilterMapProcessor(
                source_map_size=self.params["local_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"],
                embed_size=self.params["emb_size"],
                in_channels=self.params["relevance_channels"],
                out_channels=self.params["goal_channels"],
                spatial=self.params["spatial_goal_filter"],
                cat_out=self.params["cat_rel_and_goal"])
        else:
            self.map_processor_b_r = IdentityMapProcessor(
                source_map_size=self.params["local_map_size"],
                world_size_px=self.params["world_size_px"],
                world_size_m=self.params["world_size_m"])

        # Common
        # --------------------------------------------------------------------------------------------------------------

        # Sentence Embedding
        self.sentence_embedding = SentenceEmbeddingSimple(
            self.params["word_emb_size"], self.params["emb_size"],
            self.params["emb_layers"])

        self.map_transform_w_to_r = MapTransformerBase(
            source_map_size=self.params["global_map_size"],
            dest_map_size=self.params["local_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])
        self.map_transform_r_to_w = MapTransformerBase(
            source_map_size=self.params["local_map_size"],
            dest_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in
        self.batch_select = MapBatchSelect()
        # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill
        # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep
        self.map_batch_fill_missing = MapBatchFillMissing(
            self.params["local_map_size"],
            self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        # Passing true to freeze will freeze these weights regardless of whether they've been explicitly reloaded or not
        enable_weight_saving(self.sentence_embedding,
                             "sentence_embedding",
                             alwaysfreeze=False)

        # Output an action given the global semantic map
        if self.params["map_to_action"] == "downsample2":
            self.map_to_action = EgoMapToActionTriplet(
                map_channels=self.params["map_to_act_channels"],
                map_size=self.params["local_map_size"],
                other_features_size=self.params["emb_size"])

        elif self.params["map_to_action"] == "cropped":
            self.map_to_action = CroppedMapToActionTriplet(
                map_channels=self.params["map_to_act_channels"],
                map_size=self.params["local_map_size"])

        # Don't freeze the trajectory to action weights, because it will be pre-trained during path-prediction training
        # and finetuned on all timesteps end-to-end
        enable_weight_saving(self.map_to_action,
                             "map_to_action",
                             alwaysfreeze=False,
                             neverfreeze=True)

        # Auxiliary Objectives
        # --------------------------------------------------------------------------------------------------------------

        # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters,
        # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs
        # that have been saved with keep_auxiliary_input() during execution
        if aux_class_features:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_class", self.params["feature_channels"],
                                 self.params["num_landmarks"],
                                 self.params["dropout"], "fpv_features",
                                 "lm_pos_fpv", "lm_indices"))
        if aux_grounding_features:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_ground",
                                 self.params["relevance_channels"], 2,
                                 self.params["dropout"], "fpv_features_g",
                                 "lm_pos_fpv", "lm_mentioned"))
        if aux_class_map:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_class_map",
                                 self.params["feature_channels"],
                                 self.params["num_landmarks"],
                                 self.params["dropout"], "map_s_w_select",
                                 "lm_pos_map_select", "lm_indices_select"))
        if aux_grounding_map:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary2D("aux_grounding_map",
                                 self.params["relevance_channels"], 2,
                                 self.params["dropout"], "map_a_w_select",
                                 "lm_pos_map_select", "lm_mentioned_select"))
        if aux_goal_map:
            self.aux_losses.add_auxiliary(
                GoalAuxiliary2D("aux_goal_map", self.params["goal_channels"],
                                self.params["global_map_size"], "map_b_w",
                                "goal_pos_map"))
        # RSS model uses templated data for landmark and side prediction
        if self.use_aux_lang and self.params["templates"]:
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_lm", self.params["emb_size"],
                               self.params["num_landmarks"], 1,
                               "sentence_embed", "lm_mentioned_tplt"))
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_side", self.params["emb_size"],
                               self.params["num_sides"], 1, "sentence_embed",
                               "side_mentioned_tplt"))
        # CoRL model uses alignment-model groundings
        elif self.use_aux_lang:
            # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned
            self.aux_losses.add_auxiliary(
                ClassAuxiliary("aux_lang_lm_nl", self.params["emb_size"], 2,
                               self.params["num_landmarks"], "sentence_embed",
                               "lang_lm_mentioned"))
        if self.use_aux_traj_on_map:
            self.aux_losses.add_auxiliary(
                PathAuxiliary2D("aux_path", "map_b_r_select",
                                "traj_gt_r_select"))

        if self.use_aux_reg_map:
            self.aux_losses.add_auxiliary(
                FeatureRegularizationAuxiliary2D("aux_regularize_features",
                                                 None, "l1", "map_s_w_select",
                                                 "lm_pos_map_select"))

        self.goal_good_criterion = GoalPredictionGoodCriterion(ok_distance=3.2)
        self.goal_acc_meter = MovingAverageMeter(10)

        self.aux_losses.print_auxiliary_info()

        self.action_loss = ActionLoss()

        self.env_id = None
        self.prev_instruction = None
        self.seq_step = 0

    def get_iter(self):
        return int(self.iter.data[0])

    def inc_iter(self):
        self.iter += 1

    def load_img_feature_weights(self):
        if self.params.get("load_feature_net"):
            filename = self.params.get("feature_net_filename")
            weights = load_pytorch_model(None, filename)
            prefix = self.params.get("feature_net_tensor_name")
            if prefix:
                weights = find_state_subdict(weights, prefix)
            # TODO: This breaks OOP conventions
            self.img_to_features_w.img_to_features.load_state_dict(weights)
            print(
                f"Loaded pretrained weights from file {filename} with prefix {prefix}"
            )

    def init_weights(self):
        self.img_to_features_w.init_weights()
        self.load_img_feature_weights()
        self.map_accumulator_w.init_weights()
        self.sentence_embedding.init_weights()
        self.map_to_action.init_weights()
        self.map_processor_a_w.init_weights()
        self.map_processor_b_r.init_weights()

    def reset(self):
        self.tensor_store.reset()
        self.sentence_embedding.reset()
        self.img_to_features_w.reset()
        self.map_accumulator_w.reset()
        self.map_processor_a_w.reset()
        self.map_processor_b_r.reset()
        self.map_transform_w_to_r.reset()
        self.map_transform_r_to_w.reset()
        self.map_batch_fill_missing.reset()
        self.load_img_feature_weights()
        self.prev_instruction = None

    def set_env_context(self, context):
        print("Set env context to: " + str(context))
        self.env_id = context["env_id"]

    def save_viz(self, images_in, instruction):
        # Save incoming images
        imsave(
            os.path.join(get_viz_dir_for_rollout(),
                         "fpv_" + str(self.seq_step) + ".png"), images_in)
        #self.tensor_store.keep_input("fpv_img", images_in)
        # Save all of these tensors from the tensor store as images
        save_tensors_as_images(self.tensor_store, [
            "images_w", "fpv_img", "fpv_features", "f_w", "m_w",
            "map_s_w_select", "map_a_w_select", "map_a_r_select",
            "map_b_r_select"
        ], str(self.seq_step))

        # Save action as image
        action = self.tensor_store.get_inputs_batch(
            "action")[-1].data.cpu().squeeze().numpy()
        action_fname = get_viz_dir_for_rollout() + "action_" + str(
            self.seq_step) + ".png"
        Presenter().save_action(action, action_fname, "")

        instruction_fname = get_viz_dir_for_rollout() + "instruction.txt"
        with open(instruction_fname, "w") as fp:
            fp.write(instruction)

    def get_action(self, state, instruction):
        """
        Given a DroneState (from PomdpInterface) and instruction, produce a numpy 4D action (x, y, theta, pstop)
        :param state: DroneState object with the raw image from the simulator
        :param instruction: Tokenized instruction given the corpus
        #TODO: Absorb corpus within model
        :return:
        """
        # TODO: Simplify this
        self.eval()
        images_np_pure = state.image
        state_np = state.state

        #print("Act: " + debug_untokenize_instruction(instruction))

        images_np = standardize_image(images_np_pure)
        image_fpv = Variable(none_padded_seq_to_tensor([images_np]))
        state = Variable(none_padded_seq_to_tensor([state_np]))
        # Add the batch dimension

        first_step = True
        if instruction == self.prev_instruction:
            first_step = False
        self.prev_instruction = instruction
        instruction_str = debug_untokenize_instruction(instruction)

        # TODO: Move this to PomdpInterface (for now it's here because this is already visualizing the maps)
        if first_step:
            if self.rviz is not None:
                self.rviz.publish_instruction_text(
                    "instruction", debug_untokenize_instruction(instruction))
        #if first_step:
        #    say(debug_untokenize_instruction(instruction))

        img_in_t = image_fpv
        img_in_t.volatile = True

        instr_len = [len(instruction)] if instruction is not None else None
        instruction = torch.LongTensor(instruction).unsqueeze(0)
        instruction = cuda_var(instruction, self.is_cuda, self.cuda_device)

        state.volatile = True

        if self.is_cuda:
            if img_in_t is not None:
                img_in_t = img_in_t.cuda(self.cuda_device)
            state = state.cuda(self.cuda_device)

        step_enc = None
        plan_now = None

        self.seq_step += 1

        action = self(img_in_t,
                      state,
                      instruction,
                      instr_len,
                      plan=plan_now,
                      pos_enc=step_enc)

        # Save materials for analysis and presentation
        if self.params["write_figures"]:
            self.save_viz(images_np_pure, instruction_str)

        output_action = action.squeeze().data.cpu().numpy()
        stop_prob = output_action[3]
        print(f"P(STOP): {stop_prob}")
        output_stop = 1 if stop_prob > self.params["stop_p"] else 0
        output_action[3] = output_stop

        return output_action

    def deterministic_action(self, action_mean, action_std, stop_prob):
        batch_size = action_mean.size(0)
        action = Variable(
            empty_float_tensor((batch_size, 4), self.is_cuda,
                               self.cuda_device))
        action[:, 0:3] = action_mean[:, 0:3]
        action[:, 3] = stop_prob
        return action

    # This is called before beginning an execution sequence
    def start_sequence(self):
        self.seq_step = 0
        self.reset()
        print("RESETTED!")
        return

    # TODO: Move this somewhere and standardize
    def cam_poses_from_states(self, states):
        cam_pos = states[:, 9:12]
        cam_rot = states[:, 12:16]

        pos_variance = 0
        rot_variance = 0
        if self.use_pos_noise:
            pos_variance = self.params["noisy_pos_variance"]
        if self.use_rot_noise:
            rot_variance = self.params["noisy_rot_variance"]

        pose = Pose(cam_pos, cam_rot)
        if self.use_pos_noise or self.use_rot_noise:
            pose = get_noisy_poses_torch(pose,
                                         pos_variance,
                                         rot_variance,
                                         cuda=self.is_cuda,
                                         cuda_device=self.cuda_device)
        return pose

    def forward(self,
                images,
                states,
                instructions,
                instr_lengths,
                has_obs=None,
                plan=None,
                save_maps_only=False,
                pos_enc=None,
                noisy_poses=None):
        """
        :param images: BxCxHxW batch of images (observations)
        :param states: BxK batch of drone states
        :param instructions: BxM LongTensor where M is the maximum length of any instruction
        :param instr_lengths: list of len B of integers, indicating length of each instruction
        :param has_obs: list of booleans of length B indicating whether the given element in the sequence has an observation
        :param yield_semantic_maps: If true, will not compute actions (full model), but return the semantic maps that
            were built along the way in response to the images. This is ugly, but allows code reuse
        :return:
        """
        cam_poses = self.cam_poses_from_states(states)
        g_poses = None  #[None for pose in cam_poses]
        self.prof.tick("out")

        #str_instr = debug_untokenize_instruction(instructions[0].data[:instr_lengths[0]])
        #print("Trn: " + str_instr)

        # Calculate the instruction embedding
        if instructions is not None:
            # TODO: Take batch of instructions and their lengths, return batch of embeddings. Store the last one as internal state
            sent_embeddings = self.sentence_embedding(instructions,
                                                      instr_lengths)
            self.tensor_store.keep_inputs("sentence_embed", sent_embeddings)
        else:
            sent_embeddings = self.sentence_embedding.get()

        self.prof.tick("embed")

        # Extract and project features onto the egocentric frame for each image
        features_w, coverages_w = self.img_to_features_w(images,
                                                         cam_poses,
                                                         sent_embeddings,
                                                         self.tensor_store,
                                                         show="")

        # Don't back-prop into resnet if we're freezing these features (TODO: instead set requires grad to false)
        if self.params["freeze_feature_net"]:
            features_w = features_w.detach()

        self.prof.tick("img_to_map_frame")
        self.tensor_store.keep_inputs("f_w", features_w)
        self.tensor_store.keep_inputs("m_w", coverages_w)

        if run_metadata.IS_ROLLOUT:
            Presenter().show_image(features_w.data[0, 0:3],
                                   "F",
                                   torch=True,
                                   scale=8,
                                   waitkey=1)

        # Accumulate the egocentric features in a global map
        maps_w = self.map_accumulator_w(features_w,
                                        coverages_w,
                                        add_mask=has_obs,
                                        show="acc" if IMG_DBG else "")
        map_poses_w = g_poses

        # TODO: Maybe keep maps_w if necessary
        #self.tensor_store.keep_inputs("map_sm_local", maps_m)
        self.prof.tick("map_accumulate")

        # Throw away those timesteps that don't correspond to planning timesteps
        maps_w_select, map_poses_w_select, cam_poses_select, noisy_poses_select, _, sent_embeddings_select, pos_enc = \
            self.batch_select(maps_w, map_poses_w, cam_poses, noisy_poses, None, sent_embeddings, pos_enc, plan)

        # Only process the maps on planning timesteps
        if len(maps_w_select) > 0:
            self.tensor_store.keep_inputs("map_s_w_select", maps_w_select)
            self.prof.tick("batch_select")

            # Process the map via the two map_procesors
            # Do grounding of objects in the map chosen to do so
            maps_w_select, map_poses_w_select = self.map_processor_a_w(
                maps_w_select,
                sent_embeddings_select,
                map_poses_w_select,
                show="")
            self.tensor_store.keep_inputs("map_a_w_select", maps_w_select)

            Presenter().show_image(maps_w_select.data[0],
                                   "R_map_W",
                                   torch=True,
                                   scale=4,
                                   waitkey=1)

            self.prof.tick("map_proc_gnd")

            self.map_transform_w_to_r.set_maps(maps_w_select,
                                               map_poses_w_select)
            maps_m_select, map_poses_m_select = self.map_transform_w_to_r.get_maps(
                cam_poses_select)

            Presenter().show_image(maps_m_select.data[0],
                                   "R_map_R",
                                   torch=True,
                                   scale=4,
                                   waitkey=1)

            self.tensor_store.keep_inputs("map_a_r_select", maps_w_select)
            self.prof.tick("transform_w_to_r")

            self.tensor_store.keep_inputs("map_a_r_perturbed_select",
                                          maps_m_select)

            self.prof.tick("map_perturb")

            # Include positional encoding for path prediction
            if pos_enc is not None:
                sent_embeddings_pp = torch.cat(
                    [sent_embeddings_select,
                     pos_enc.unsqueeze(1)], dim=1)
            else:
                sent_embeddings_pp = sent_embeddings_select

            # Process the map via the two map_procesors (e.g. predict the trajectory that we'll be taking)
            maps_m_select, map_poses_m_select = self.map_processor_b_r(
                maps_m_select, sent_embeddings_pp, map_poses_m_select)

            self.tensor_store.keep_inputs("map_b_r_select", maps_m_select)

            Presenter().show_image(maps_m_select.data[0],
                                   "G_map_R",
                                   torch=True,
                                   scale=4,
                                   waitkey=1)

            if True:
                self.map_transform_r_to_w.set_maps(maps_m_select,
                                                   map_poses_m_select)
                maps_b_w_select, _ = self.map_transform_r_to_w.get_maps(None)
                Presenter().show_image(maps_b_w_select.data[0],
                                       "G_map_G",
                                       torch=True,
                                       scale=8,
                                       waitkey=1)
                self.tensor_store.keep_inputs("map_b_w_select",
                                              maps_b_w_select)
                if self.rviz:
                    self.rviz.publish_map(
                        "goal_map",
                        maps_b_w_select[0].data.cpu().numpy().transpose(
                            1, 2, 0), self.params["world_size_m"])

            self.prof.tick("map_proc_b")

        else:
            maps_m_select = None

        maps_m, map_poses_m = self.map_batch_fill_missing(maps_m_select,
                                                          cam_poses,
                                                          plan,
                                                          show="")
        self.tensor_store.keep_inputs("map_b_r", maps_m)
        self.prof.tick("map_fill_missing")

        # Keep global maps for auxiliary objectives if necessary
        if self.aux_losses.input_required("map_b_w"):
            maps_b, _ = self.map_processor_b_r.get_maps(g_poses)
            self.tensor_store.keep_inputs("map_b_w", maps_b)

        self.prof.tick("keep_global_maps")

        if run_metadata.IS_ROLLOUT:
            pass
            Presenter().show_image(maps_m.data[0, 0:3],
                                   "plan_map_now",
                                   torch=True,
                                   scale=4,
                                   waitkey=1)
            Presenter().show_image(maps_w.data[0, 0:3],
                                   "sm_map_now",
                                   torch=True,
                                   scale=8,
                                   waitkey=1)
        self.prof.tick("viz")

        # Output the final action given the processed map
        action_pred = self.map_to_action(maps_m, sent_embeddings)
        out_action = self.deterministic_action(action_pred[:, 0:3], None,
                                               action_pred[:, 3])

        self.tensor_store.keep_inputs("action", out_action)
        self.prof.tick("map_to_action")

        return out_action

    # TODO: The below two methods seem to do the same thing
    def maybe_cuda(self, tensor):
        if self.is_cuda:
            return tensor.cuda()
        else:
            return tensor

    def cuda_var(self, tensor):
        return cuda_var(tensor, self.is_cuda, self.cuda_device)

    # Forward pass for training (with batch optimizations
    def sup_loss_on_batch(self, batch, eval):
        self.prof.tick("out")

        action_loss_total = Variable(
            empty_float_tensor([1], self.is_cuda, self.cuda_device))

        if batch is None:
            print("Skipping None Batch")
            return action_loss_total

        images = self.maybe_cuda(batch["images"])

        instructions = self.maybe_cuda(batch["instr"])
        instr_lengths = batch["instr_len"]
        states = self.maybe_cuda(batch["states"])
        actions = self.maybe_cuda(batch["actions"])

        # Auxiliary labels
        lm_pos_fpv = batch["lm_pos_fpv"]
        lm_pos_map = batch["lm_pos_map"]
        lm_indices = batch["lm_indices"]
        goal_pos_map = batch["goal_loc"]

        # TODO: Get rid of this. We will have lm_mentioned booleans and lm_mentioned_idx integers and that's it.
        TEMPLATES = True
        if TEMPLATES:
            lm_mentioned_tplt = batch["lm_mentioned_tplt"]
            side_mentioned_tplt = batch["side_mentioned_tplt"]
        else:
            lang_lm_mentioned = batch["lang_lm_mentioned"]
        lm_mentioned = batch["lm_mentioned"]

        # stops = self.maybe_cuda(batch["stops"])
        masks = self.maybe_cuda(batch["masks"])
        # This is the first-timestep metadata
        metadata = batch["md"]

        seq_len = images.size(1)
        batch_size = images.size(0)
        count = 0
        correct_goal_count = 0
        goal_count = 0

        # Loop thru batch
        for b in range(batch_size):
            seg_idx = -1

            self.reset()

            self.prof.tick("out")
            b_seq_len = len_until_nones(metadata[b])

            # TODO: Generalize this
            # Slice the data according to the sequence length
            b_metadata = metadata[b][:b_seq_len]
            b_images = images[b][:b_seq_len]
            b_instructions = instructions[b][:b_seq_len]
            b_instr_len = instr_lengths[b][:b_seq_len]
            b_states = states[b][:b_seq_len]
            b_actions = actions[b][:b_seq_len]
            b_lm_pos_fpv = lm_pos_fpv[b][:b_seq_len]
            b_lm_pos_map = lm_pos_map[b][:b_seq_len]
            b_lm_indices = lm_indices[b][:b_seq_len]
            b_goal_pos = goal_pos_map[b][:b_seq_len]
            if not TEMPLATES:
                b_lang_lm_mentioned = lang_lm_mentioned[b][:b_seq_len]
            b_lm_mentioned = lm_mentioned[b][:b_seq_len]

            # Convert landmark and goal position from meters_and_metrics to pixels
            b_lm_pos_map = [
                torch.from_numpy(
                    transformations.pos_m_to_px(p.numpy(),
                                                self.params["global_map_size"],
                                                self.params["world_size_m"],
                                                self.params["world_size_px"]))
                if p is not None else None for p in b_lm_pos_map
            ]

            b_goal_pos = torch.from_numpy(
                transformations.pos_m_to_px(b_goal_pos.numpy(),
                                            self.params["global_map_size"],
                                            self.params["world_size_m"],
                                            self.params["world_size_px"]))

            b_lm_pos_map = [
                self.cuda_var(s.long()) if s is not None else None
                for s in b_lm_pos_map
            ]
            b_lm_pos_fpv = [
                self.cuda_var(
                    (s / RESNET_FACTOR).long()) if s is not None else None
                for s in b_lm_pos_fpv
            ]
            b_lm_indices = [
                self.cuda_var(s) if s is not None else None
                for s in b_lm_indices
            ]
            b_goal_pos = self.cuda_var(b_goal_pos)
            if not TEMPLATES:
                b_lang_lm_mentioned = self.cuda_var(b_lang_lm_mentioned)
            b_lm_mentioned = [
                self.cuda_var(s) if s is not None else None
                for s in b_lm_mentioned
            ]

            # TODO: Figure out how to keep these properly. Perhaps as a whole batch is best
            # TODO: Introduce a key-value store (encapsulate instead of inherit)
            self.tensor_store.keep_inputs("lm_pos_fpv", b_lm_pos_fpv)
            self.tensor_store.keep_inputs("lm_pos_map", b_lm_pos_map)
            self.tensor_store.keep_inputs("lm_indices", b_lm_indices)
            self.tensor_store.keep_inputs("goal_pos_map", b_goal_pos)
            if not TEMPLATES:
                self.tensor_store.keep_inputs("lang_lm_mentioned",
                                              b_lang_lm_mentioned)
            self.tensor_store.keep_inputs("lm_mentioned", b_lm_mentioned)

            # TODO: Abstract all of these if-elses in a modular way once we know which ones are necessary
            if TEMPLATES:
                b_lm_mentioned_tplt = lm_mentioned_tplt[b][:b_seq_len]
                b_side_mentioned_tplt = side_mentioned_tplt[b][:b_seq_len]
                b_side_mentioned_tplt = self.cuda_var(b_side_mentioned_tplt)
                b_lm_mentioned_tplt = self.cuda_var(b_lm_mentioned_tplt)
                self.tensor_store.keep_inputs("lm_mentioned_tplt",
                                              b_lm_mentioned_tplt)
                self.tensor_store.keep_inputs("side_mentioned_tplt",
                                              b_side_mentioned_tplt)

                #b_lm_mentioned = b_lm_mentioned_tplt

            b_obs_mask = [True for _ in range(b_seq_len)]
            b_plan_mask = [True for _ in range(b_seq_len)]
            b_plan_mask_t_cpu = torch.Tensor(b_plan_mask) == True
            b_plan_mask_t = self.maybe_cuda(b_plan_mask_t_cpu)
            b_pos_enc = None

            # ----------------------------------------------------------------------------
            # Optional Auxiliary Inputs
            # ----------------------------------------------------------------------------
            if self.aux_losses.input_required("lm_pos_map_select"):
                b_lm_pos_map_select = [
                    lm_pos for i, lm_pos in enumerate(b_lm_pos_map)
                    if b_plan_mask[i]
                ]
                self.tensor_store.keep_inputs("lm_pos_map_select",
                                              b_lm_pos_map_select)
            if self.aux_losses.input_required("lm_indices_select"):
                b_lm_indices_select = [
                    lm_idx for i, lm_idx in enumerate(b_lm_indices)
                    if b_plan_mask[i]
                ]
                self.tensor_store.keep_inputs("lm_indices_select",
                                              b_lm_indices_select)
            if self.aux_losses.input_required("lm_mentioned_select"):
                b_lm_mentioned_select = [
                    lm_m for i, lm_m in enumerate(b_lm_mentioned)
                    if b_plan_mask[i]
                ]
                self.tensor_store.keep_inputs("lm_mentioned_select",
                                              b_lm_mentioned_select)

            # ----------------------------------------------------------------------------

            self.prof.tick("inputs")

            actions = self(b_images,
                           b_states,
                           b_instructions,
                           b_instr_len,
                           has_obs=b_obs_mask,
                           plan=b_plan_mask,
                           pos_enc=b_pos_enc)

            action_losses, _ = self.action_loss(b_actions,
                                                actions,
                                                batchreduce=False)

            self.prof.tick("call")

            action_losses = self.action_loss.batch_reduce_loss(action_losses)
            action_loss = self.action_loss.reduce_loss(action_losses)

            action_loss_total = action_loss
            count += b_seq_len

            self.prof.tick("loss")

        action_loss_avg = action_loss_total / (count + 1e-9)

        self.prof.tick("out")

        # Doing this in the end (outside of se
        aux_losses = self.aux_losses.calculate_aux_loss(self.tensor_store,
                                                        reduce_average=True)
        aux_loss = self.aux_losses.combine_losses(aux_losses, self.aux_weights)

        prefix = self.model_name + ("/eval" if eval else "/train")

        self.writer.add_dict(prefix, get_current_meters(), self.get_iter())
        self.writer.add_dict(prefix, aux_losses, self.get_iter())
        self.writer.add_scalar(prefix + "/action_loss",
                               action_loss_avg.data.cpu().item(),
                               self.get_iter())
        # TODO: Log value here
        self.writer.add_scalar(prefix + "/goal_accuracy",
                               self.goal_acc_meter.get(), self.get_iter())

        self.prof.tick("auxiliaries")

        total_loss = action_loss_avg + aux_loss

        self.inc_iter()

        self.prof.tick("summaries")
        self.prof.loop()
        self.prof.print_stats(1)

        return total_loss

    def get_dataset(self,
                    data=None,
                    envs=None,
                    dataset_names=None,
                    dataset_prefix=None,
                    eval=False):
        # TODO: Maybe use eval here
        #if self.fpv:
        data_sources = []
        # If we're running auxiliary objectives, we need to include the data sources for the auxiliary labels
        #if self.use_aux_class_features or self.use_aux_class_on_map or self.use_aux_grounding_features or self.use_aux_grounding_on_map:
        #if self.use_aux_goal_on_map:
        data_sources.append(aup.PROVIDER_LM_POS_DATA)
        data_sources.append(aup.PROVIDER_GOAL_POS)
        #data_sources.append(aup.PROVIDER_LANDMARKS_MENTIONED)
        data_sources.append(aup.PROVIDER_LANG_TEMPLATE)

        #if self.use_rot_noise or self.use_pos_noise:
        #    data_sources.append(aup.PROVIDER_POSE_NOISE)

        return SegmentDataset(data=data,
                              env_list=envs,
                              dataset_names=dataset_names,
                              dataset_prefix=dataset_prefix,
                              aux_provider_names=data_sources,
                              segment_level=True)
Esempio n. 12
0
    def __init__(self, run_name="", domain="sim"):

        super(PVN_Stage1_Bidomain_Original, self).__init__()
        self.model_name = "pvn_stage1"
        self.run_name = run_name
        self.domain = domain
        self.writer = LoggingSummaryWriter(
            log_dir=f"{get_logging_dir()}/runs/{run_name}/{self.domain}")
        #self.writer = DummySummaryWriter()

        self.root_params = get_current_parameters()["ModelPVN"]
        self.params = self.root_params["Stage1"]
        self.use_aux = self.root_params["UseAux"]
        self.aux_weights = self.root_params["AuxWeights"]

        if self.params.get("weight_override"):
            aux_weights_override_name = "AuxWeightsRealOverride" if self.domain == "real" else "AuxWeightsSimOverride"
            aux_weights_override = self.root_params.get(
                aux_weights_override_name)
            if aux_weights_override:
                print(
                    f"Overriding auxiliary weights for domain: {self.domain}")
                self.aux_weights = dict_merge(self.aux_weights,
                                              aux_weights_override)

        self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE)
        self.iter = nn.Parameter(torch.zeros(1), requires_grad=False)

        self.tensor_store = KeyTensorStore()
        self.losses = AuxiliaryLosses()

        # Auxiliary Objectives
        self.do_perturb_maps = self.params["perturb_maps"]
        print("Perturbing maps: ", self.do_perturb_maps)

        # Path-pred FPV model definition
        # --------------------------------------------------------------------------------------------------------------

        self.num_feature_channels = self.params[
            "feature_channels"]  # + params["relevance_channels"]
        self.num_map_channels = self.params["pathpred_in_channels"]

        self.img_to_features_w = FPVToGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"],
            res_channels=self.params["resnet_channels"],
            map_channels=self.params["feature_channels"],
            img_w=self.params["img_w"],
            img_h=self.params["img_h"],
            cam_h_fov=self.params["cam_h_fov"],
            domain=domain,
            img_dbg=IMG_DBG)

        self.map_accumulator_w = LeakyIntegratorGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        self.add_init_pos_to_coverage = AddDroneInitPosToCoverage(
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"],
            map_size_px=self.params["local_map_size"])

        # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame
        self.map_processor_grounding = LangFilterMapProcessor(
            embed_size=self.params["emb_size"],
            in_channels=self.params["feature_channels"],
            out_channels=self.params["relevance_channels"],
            spatial=False,
            cat_out=False)

        ratio_prior_channels = self.params["feature_channels"]

        # Process the global accumulated map
        self.path_predictor_lingunet = RatioPathPredictor(
            self.params["lingunet"],
            prior_channels_in=self.params["feature_channels"],
            posterior_channels_in=self.params["pathpred_in_channels"],
            dual_head=self.params["predict_confidence"],
            compute_prior=self.params["compute_prior"],
            use_prior=self.params["use_prior_only"],
            oob=self.params["clip_observability"])

        print("UNet Channels: " + str(self.num_map_channels))
        print("Feature Channels: " + str(self.num_feature_channels))

        # TODO:O Verify that config has the same randomization parameters (yaw, pos, etc)
        self.second_transform = self.do_perturb_maps or self.params[
            "predict_in_start_frame"]

        # Sentence Embedding
        self.sentence_embedding = SentenceEmbeddingSimple(
            self.params["word_emb_size"], self.params["emb_size"],
            self.params["emb_layers"], self.params["emb_dropout"])

        self.map_transform_local_to_local = MapTransformer(
            source_map_size=self.params["local_map_size"],
            dest_map_size=self.params["local_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        self.map_transform_global_to_local = MapTransformer(
            source_map_size=self.params["global_map_size"],
            dest_map_size=self.params["local_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        self.map_transform_local_to_global = MapTransformer(
            source_map_size=self.params["local_map_size"],
            dest_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        self.map_transform_s_to_p = self.map_transform_local_to_local
        self.map_transform_w_to_s = self.map_transform_global_to_local
        self.map_transform_w_to_r = self.map_transform_global_to_local
        self.map_transform_r_to_s = self.map_transform_local_to_local
        self.map_transform_r_to_w = self.map_transform_local_to_global
        self.map_transform_p_to_w = self.map_transform_local_to_global
        self.map_transform_p_to_r = self.map_transform_local_to_local

        # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in
        self.batch_select = MapBatchSelect()
        # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill
        # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep
        self.map_batch_fill_missing = MapBatchFillMissing(
            self.params["local_map_size"], self.params["world_size_px"],
            self.params["world_size_m"])

        self.spatialsoftmax = SpatialSoftmax2d()
        self.visitation_softmax = VisitationSoftmax()

        #TODO:O Use CroppedMapToActionTriplet in Wrapper as Stage2
        # Auxiliary Objectives
        # --------------------------------------------------------------------------------------------------------------

        # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters,
        # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs
        # that have been saved with keep_auxiliary_input() during execution
        if self.use_aux["class_features"]:
            self.losses.add_auxiliary(
                ClassAuxiliary2D("class_features",
                                 self.params["feature_channels"],
                                 self.params["num_landmarks"], 0,
                                 "fpv_features", "lm_pos_fpv", "lm_indices"))
        if self.use_aux["grounding_features"]:
            self.losses.add_auxiliary(
                ClassAuxiliary2D("grounding_features",
                                 self.params["relevance_channels"], 2, 0,
                                 "fpv_features_g", "lm_pos_fpv",
                                 "lm_mentioned"))
        if self.use_aux["class_map"]:
            self.losses.add_auxiliary(
                ClassAuxiliary2D("class_map", self.params["feature_channels"],
                                 self.params["num_landmarks"], 0, "S_W_select",
                                 "lm_pos_map_select", "lm_indices_select"))
        if self.use_aux["grounding_map"]:
            self.losses.add_auxiliary(
                ClassAuxiliary2D("grounding_map",
                                 self.params["relevance_channels"], 2, 0,
                                 "R_W_select", "lm_pos_map_select",
                                 "lm_mentioned_select"))
        # CoRL model uses alignment-model groundings
        if self.use_aux["lang"]:
            # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned
            self.losses.add_auxiliary(
                ClassAuxiliary("lang", self.params["emb_size"], 2,
                               self.params["num_landmarks"], "sentence_embed",
                               "lang_lm_mentioned"))

        if self.use_aux["regularize_map"]:
            self.losses.add_auxiliary(
                FeatureRegularizationAuxiliary2D("regularize_map", "l1",
                                                 "S_W_select"))

        lossfunc = self.params["path_loss_function"]
        if self.params["clip_observability"]:
            self.losses.add_auxiliary(
                PathAuxiliary2D("visitation_dist", lossfunc,
                                self.params["clip_observability"],
                                "log_v_dist_s_select",
                                "v_dist_s_ground_truth_select", "SM_S_select"))
        else:
            self.losses.add_auxiliary(
                PathAuxiliary2D("visitation_dist", lossfunc,
                                self.params["clip_observability"],
                                "log_v_dist_s_select",
                                "v_dist_s_ground_truth_select", "SM_S_select"))

        self.goal_good_criterion = GoalPredictionGoodCriterion(
            ok_distance=self.params["world_size_px"] * 0.1)
        self.goal_acc_meter = MovingAverageMeter(10)
        self.visible_goal_acc_meter = MovingAverageMeter(10)
        self.invisible_goal_acc_meter = MovingAverageMeter(10)
        self.visible_goal_frac_meter = MovingAverageMeter(10)

        self.losses.print_auxiliary_info()

        self.total_goals = 0
        self.correct_goals = 0

        self.env_id = None
        self.env_img = None
        self.seg_idx = None
        self.prev_instruction = None
        self.seq_step = 0

        self.should_save_path_overlays = False
Esempio n. 13
0
class PVN_Stage1_Bidomain_Original(nn.Module):
    def __init__(self, run_name="", domain="sim"):

        super(PVN_Stage1_Bidomain_Original, self).__init__()
        self.model_name = "pvn_stage1"
        self.run_name = run_name
        self.domain = domain
        self.writer = LoggingSummaryWriter(
            log_dir=f"{get_logging_dir()}/runs/{run_name}/{self.domain}")
        #self.writer = DummySummaryWriter()

        self.root_params = get_current_parameters()["ModelPVN"]
        self.params = self.root_params["Stage1"]
        self.use_aux = self.root_params["UseAux"]
        self.aux_weights = self.root_params["AuxWeights"]

        if self.params.get("weight_override"):
            aux_weights_override_name = "AuxWeightsRealOverride" if self.domain == "real" else "AuxWeightsSimOverride"
            aux_weights_override = self.root_params.get(
                aux_weights_override_name)
            if aux_weights_override:
                print(
                    f"Overriding auxiliary weights for domain: {self.domain}")
                self.aux_weights = dict_merge(self.aux_weights,
                                              aux_weights_override)

        self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE)
        self.iter = nn.Parameter(torch.zeros(1), requires_grad=False)

        self.tensor_store = KeyTensorStore()
        self.losses = AuxiliaryLosses()

        # Auxiliary Objectives
        self.do_perturb_maps = self.params["perturb_maps"]
        print("Perturbing maps: ", self.do_perturb_maps)

        # Path-pred FPV model definition
        # --------------------------------------------------------------------------------------------------------------

        self.num_feature_channels = self.params[
            "feature_channels"]  # + params["relevance_channels"]
        self.num_map_channels = self.params["pathpred_in_channels"]

        self.img_to_features_w = FPVToGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"],
            res_channels=self.params["resnet_channels"],
            map_channels=self.params["feature_channels"],
            img_w=self.params["img_w"],
            img_h=self.params["img_h"],
            cam_h_fov=self.params["cam_h_fov"],
            domain=domain,
            img_dbg=IMG_DBG)

        self.map_accumulator_w = LeakyIntegratorGlobalMap(
            source_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        self.add_init_pos_to_coverage = AddDroneInitPosToCoverage(
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"],
            map_size_px=self.params["local_map_size"])

        # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame
        self.map_processor_grounding = LangFilterMapProcessor(
            embed_size=self.params["emb_size"],
            in_channels=self.params["feature_channels"],
            out_channels=self.params["relevance_channels"],
            spatial=False,
            cat_out=False)

        ratio_prior_channels = self.params["feature_channels"]

        # Process the global accumulated map
        self.path_predictor_lingunet = RatioPathPredictor(
            self.params["lingunet"],
            prior_channels_in=self.params["feature_channels"],
            posterior_channels_in=self.params["pathpred_in_channels"],
            dual_head=self.params["predict_confidence"],
            compute_prior=self.params["compute_prior"],
            use_prior=self.params["use_prior_only"],
            oob=self.params["clip_observability"])

        print("UNet Channels: " + str(self.num_map_channels))
        print("Feature Channels: " + str(self.num_feature_channels))

        # TODO:O Verify that config has the same randomization parameters (yaw, pos, etc)
        self.second_transform = self.do_perturb_maps or self.params[
            "predict_in_start_frame"]

        # Sentence Embedding
        self.sentence_embedding = SentenceEmbeddingSimple(
            self.params["word_emb_size"], self.params["emb_size"],
            self.params["emb_layers"], self.params["emb_dropout"])

        self.map_transform_local_to_local = MapTransformer(
            source_map_size=self.params["local_map_size"],
            dest_map_size=self.params["local_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        self.map_transform_global_to_local = MapTransformer(
            source_map_size=self.params["global_map_size"],
            dest_map_size=self.params["local_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        self.map_transform_local_to_global = MapTransformer(
            source_map_size=self.params["local_map_size"],
            dest_map_size=self.params["global_map_size"],
            world_size_px=self.params["world_size_px"],
            world_size_m=self.params["world_size_m"])

        self.map_transform_s_to_p = self.map_transform_local_to_local
        self.map_transform_w_to_s = self.map_transform_global_to_local
        self.map_transform_w_to_r = self.map_transform_global_to_local
        self.map_transform_r_to_s = self.map_transform_local_to_local
        self.map_transform_r_to_w = self.map_transform_local_to_global
        self.map_transform_p_to_w = self.map_transform_local_to_global
        self.map_transform_p_to_r = self.map_transform_local_to_local

        # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in
        self.batch_select = MapBatchSelect()
        # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill
        # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep
        self.map_batch_fill_missing = MapBatchFillMissing(
            self.params["local_map_size"], self.params["world_size_px"],
            self.params["world_size_m"])

        self.spatialsoftmax = SpatialSoftmax2d()
        self.visitation_softmax = VisitationSoftmax()

        #TODO:O Use CroppedMapToActionTriplet in Wrapper as Stage2
        # Auxiliary Objectives
        # --------------------------------------------------------------------------------------------------------------

        # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters,
        # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs
        # that have been saved with keep_auxiliary_input() during execution
        if self.use_aux["class_features"]:
            self.losses.add_auxiliary(
                ClassAuxiliary2D("class_features",
                                 self.params["feature_channels"],
                                 self.params["num_landmarks"], 0,
                                 "fpv_features", "lm_pos_fpv", "lm_indices"))
        if self.use_aux["grounding_features"]:
            self.losses.add_auxiliary(
                ClassAuxiliary2D("grounding_features",
                                 self.params["relevance_channels"], 2, 0,
                                 "fpv_features_g", "lm_pos_fpv",
                                 "lm_mentioned"))
        if self.use_aux["class_map"]:
            self.losses.add_auxiliary(
                ClassAuxiliary2D("class_map", self.params["feature_channels"],
                                 self.params["num_landmarks"], 0, "S_W_select",
                                 "lm_pos_map_select", "lm_indices_select"))
        if self.use_aux["grounding_map"]:
            self.losses.add_auxiliary(
                ClassAuxiliary2D("grounding_map",
                                 self.params["relevance_channels"], 2, 0,
                                 "R_W_select", "lm_pos_map_select",
                                 "lm_mentioned_select"))
        # CoRL model uses alignment-model groundings
        if self.use_aux["lang"]:
            # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned
            self.losses.add_auxiliary(
                ClassAuxiliary("lang", self.params["emb_size"], 2,
                               self.params["num_landmarks"], "sentence_embed",
                               "lang_lm_mentioned"))

        if self.use_aux["regularize_map"]:
            self.losses.add_auxiliary(
                FeatureRegularizationAuxiliary2D("regularize_map", "l1",
                                                 "S_W_select"))

        lossfunc = self.params["path_loss_function"]
        if self.params["clip_observability"]:
            self.losses.add_auxiliary(
                PathAuxiliary2D("visitation_dist", lossfunc,
                                self.params["clip_observability"],
                                "log_v_dist_s_select",
                                "v_dist_s_ground_truth_select", "SM_S_select"))
        else:
            self.losses.add_auxiliary(
                PathAuxiliary2D("visitation_dist", lossfunc,
                                self.params["clip_observability"],
                                "log_v_dist_s_select",
                                "v_dist_s_ground_truth_select", "SM_S_select"))

        self.goal_good_criterion = GoalPredictionGoodCriterion(
            ok_distance=self.params["world_size_px"] * 0.1)
        self.goal_acc_meter = MovingAverageMeter(10)
        self.visible_goal_acc_meter = MovingAverageMeter(10)
        self.invisible_goal_acc_meter = MovingAverageMeter(10)
        self.visible_goal_frac_meter = MovingAverageMeter(10)

        self.losses.print_auxiliary_info()

        self.total_goals = 0
        self.correct_goals = 0

        self.env_id = None
        self.env_img = None
        self.seg_idx = None
        self.prev_instruction = None
        self.seq_step = 0

        self.should_save_path_overlays = False

    def make_picklable(self):
        self.writer = DummySummaryWriter()

    def steal_cross_domain_modules(self, other_self):
        self.iter = other_self.iter
        self.losses = other_self.losses
        self.sentence_embedding = other_self.sentence_embedding
        self.map_accumulator_w = other_self.map_accumulator_w
        self.map_processor_grounding = other_self.map_processor_grounding
        self.path_predictor_lingunet = other_self.path_predictor_lingunet
        #self.img_to_features_w = other_self.img_to_features_w

    def both_domain_parameters(self, other_self):
        # This function iterates and yields parameters from this module and the other module, but does not yield
        # shared parameters twice.
        # First yield all of the other module's parameters
        for p in other_self.parameters():
            yield p
        # Then yield all the parameters from the this module that are not shared with the other one
        for p in self.img_to_features_w.parameters():
            yield p
        return

    def get_iter(self):
        return int(self.iter.data[0])

    def inc_iter(self):
        self.iter += 1

    def load_state_dict(self, state_dict, strict=True):
        super(PVN_Stage1_Bidomain_Original,
              self).load_state_dict(state_dict, strict)

    def init_weights(self):
        self.img_to_features_w.init_weights()
        self.map_accumulator_w.init_weights()
        self.sentence_embedding.init_weights()
        self.map_processor_grounding.init_weights()
        self.path_predictor_lingunet.init_weights()

    def reset(self):
        # TODO: This is error prone. Create a class StatefulModule, iterate submodules and reset all stateful modules
        self.tensor_store.reset()
        self.sentence_embedding.reset()
        self.img_to_features_w.reset()
        self.map_accumulator_w.reset()
        self.map_batch_fill_missing.reset()
        self.prev_instruction = None

    def setEnvContext(self, context):
        print("Set env context to: " + str(context))
        self.env_id = context["env_id"]
        self.env_img = env.load_env_img(self.env_id, 256, 256)
        self.env_img = self.env_img[:, :, [2, 1, 0]]

    def set_save_path_overlays(self, save_path_overlays):
        self.should_save_path_overlays = save_path_overlays

    #TODO:O Figure out what to do with save_ground_truth_overlays

    def print_metrics(self):
        print(f"Model {self.model_name}:{self.domain} metrics:")
        print(
            f"   Goal accuracy: {float(self.correct_goals) / self.total_goals}"
        )

    def goal_visible(self, masks, goal_pos):
        goal_mask = masks.detach()[0, 0, :, :]
        goal_pos = goal_pos[0].long().detach()
        visible = bool(
            (goal_mask[goal_pos[0], goal_pos[1]] > 0.5).detach().cpu().item())
        return visible

    # This is called before beginning an execution sequence
    def start_sequence(self):
        self.seq_step = 0
        self.reset()
        return

    def cam_poses_from_states(self, states):
        cam_pos = states[:, 9:12]
        cam_rot = states[:, 12:16]
        pose = Pose(cam_pos, cam_rot)
        return pose

    def forward(self,
                images,
                states,
                instructions,
                instr_lengths,
                plan=None,
                noisy_start_poses=None,
                start_poses=None,
                firstseg=None,
                select_only=True,
                halfway=False,
                grad_noise=False,
                rl=False):
        """
        :param images: BxCxHxW batch of images (observations)
        :param states: BxK batch of drone states
        :param instructions: BxM LongTensor where M is the maximum length of any instruction
        :param instr_lengths: list of len B of integers, indicating length of each instruction
        :param plan: list of B booleans indicating True for timesteps where we do planning and False otherwise
        :param noisy_start_poses: list of noisy start poses (for data-augmentation). These define the path-prediction frame at training time
        :param start_poses: list of drone start poses (these should be equal in practice)
        :param firstseg: list of booleans indicating True if a new segment starts at that timestep
        :param select_only: boolean indicating whether to only compute visitation distributions for planning timesteps (default True)
        :param rl: boolean indicating if we're doing reinforcement learning. If yes, output more than the visitation distribution
        :return:
        """
        cam_poses = self.cam_poses_from_states(states)
        g_poses = None  # None pose is a placeholder for the canonical global pose.
        self.prof.tick("out")

        self.tensor_store.keep_inputs("fpv", images)

        # Calculate the instruction embedding
        if instructions is not None:
            # TODO: Take batch of instructions and their lengths, return batch of embeddings. Store the last one as internal state
            # TODO: There's an assumption here that there's only a single instruction in the batch and it doesn't change
            # UNCOMMENT THE BELOW LINE TO REVERT BACK TO GENERAL CASE OF SEPARATE INSTRUCTION PER STEP
            if self.params["ignore_instruction"]:
                # If we're ignoring instructions, just feed in an instruction that consists of a single zero-token
                sent_embeddings = self.sentence_embedding(
                    torch.zeros_like(instructions[0:1, 0:1]),
                    torch.ones_like(instr_lengths[0:1]))
            else:
                sent_embeddings = self.sentence_embedding(
                    instructions[0:1], instr_lengths[0:1])
            self.tensor_store.keep_inputs("sentence_embed", sent_embeddings)
        else:
            sent_embeddings = self.sentence_embedding.get()

        self.prof.tick("embed")

        # Extract and project features onto the egocentric frame for each image
        F_W, M_W = self.img_to_features_w(images,
                                          cam_poses,
                                          sent_embeddings,
                                          self.tensor_store,
                                          show="",
                                          halfway=halfway)

        # For training the critic, this is as far as we need to poceed with the computation.
        # self.img_to_features_w has stored computed feature maps inside the tensor store, which will then be retrieved by the critic
        if halfway == True:  # Warning: halfway must be True not truthy
            return None, None

        self.tensor_store.keep_inputs("F_w", F_W)
        self.tensor_store.keep_inputs("M_w", M_W)
        self.prof.tick("img_to_map_frame")

        # Accumulate the egocentric features in a global map
        reset_mask = firstseg if self.params["clear_history"] else None

        # Consider the space very near the drone and right under it as observed - draw ones on the observability mask
        # If we treat that space as unobserved, then there's going to be a gap in the visitation distribution, which
        # makes training with RL more difficult, as there is no reward feedback if the drone doesn't cross that gap.
        if self.params.get("cover_init_pos", False):
            StartMasks_R = self.add_init_pos_to_coverage.get_init_pos_masks(
                M_W.shape[0], M_W.device)
            StartMasks_W, _ = self.map_transform_r_to_w(
                StartMasks_R, cam_poses, None)
            M_W = self.add_init_pos_to_coverage(M_W, StartMasks_W)

        S_W, SM_W = self.map_accumulator_w(F_W,
                                           M_W,
                                           reset_mask=reset_mask,
                                           show="acc" if IMG_DBG else "")
        S_W_poses = g_poses
        self.prof.tick("map_accumulate")

        # If we're training Stage 2 with imitation learning from ground truth visitation distributions, we want to
        # compute observability masks with the same code that's used in Stage 1 to avoid mistakes.
        if halfway == "observability":
            map_uncoverage_w = 1 - SM_W
            return map_uncoverage_w

        # Throw away those timesteps that don't correspond to planning timesteps
        S_W_select, SM_W_select, S_W_poses_select, cam_poses_select, noisy_start_poses_select, start_poses_select, sent_embeddings_select = \
            self.batch_select(S_W, SM_W, S_W_poses, cam_poses, noisy_start_poses, start_poses, sent_embeddings, plan)

        #maps_m_prior_select, maps_m_posterior_select = None, None

        # Only process the maps on plannieng timesteps
        if len(S_W_select) == 0:
            return None

        self.tensor_store.keep_inputs("S_W_select", S_W_select)
        self.prof.tick("batch_select")

        # Process the map via the two map_procesors
        # Do grounding of objects in the map chosen to do so
        if self.use_aux["grounding_map"]:
            R_W_select, RS_W_poses_select = self.map_processor_grounding(
                S_W_select, sent_embeddings_select, S_W_poses_select, show="")
            self.tensor_store.keep_inputs("R_W_select", R_W_select)
            self.prof.tick("map_proc_gnd")
            # Concatenate grounding map and semantic map along channel dimension
            RS_W_select = torch.cat([S_W_select, R_W_select], 1)

        else:
            RS_W_select = S_W_select
            RS_W_poses_select = S_W_poses_select

        s_poses_select = start_poses_select if self.params[
            "predict_in_start_frame"] else cam_poses_select
        RS_S_select, RS_S_poses_select = self.map_transform_w_to_s(
            RS_W_select, RS_W_poses_select, s_poses_select)
        SM_S_select, SM_S_poses_select = self.map_transform_w_to_s(
            SM_W_select, S_W_poses_select, s_poses_select)

        assert SM_S_poses_select == RS_S_poses_select, "Masks and maps should have the same pose in start frame"

        self.tensor_store.keep_inputs("RS_S_select", RS_S_select)
        self.tensor_store.keep_inputs("SM_S_select", SM_S_select)
        self.prof.tick("transform_w_to_s")

        # Data augmentation for trajectory prediction
        map_poses_clean_select = None
        # TODO: Figure out if we can just swap out start poses for noisy poses and get rid of separate noisy poses
        if self.do_perturb_maps:
            assert noisy_start_poses_select is not None, "Noisy poses must be provided if we're perturbing maps"
            RS_P_select, RS_P_poses_select = self.map_transform_s_to_p(
                RS_S_select, RS_S_poses_select, noisy_start_poses_select)
        else:
            RS_P_select, RS_P_poses_select = RS_S_select, RS_S_poses_select

        self.tensor_store.keep_inputs("RS_perturbed_select", RS_P_select)
        self.prof.tick("map_perturb")

        sent_embeddings_pp = sent_embeddings_select

        # Run lingunet on the map to predict visitation distribution scores (pre-softmax)
        # ---------
        log_v_dist_p_select, v_dist_p_poses_select = self.path_predictor_lingunet(
            RS_P_select,
            sent_embeddings_pp,
            RS_P_poses_select,
            tensor_store=self.tensor_store)
        # ---------

        self.prof.tick("pathpred")

        # TODO: Shouldn't we be transforming probability distributions instead of scores? Otherwise OOB space will have weird values
        # Transform distributions back to world reference frame and keep them (these are the model outputs)
        both_inner_w, v_dist_w_poses_select = self.map_transform_p_to_w(
            log_v_dist_p_select.inner_distribution, v_dist_p_poses_select,
            None)
        log_v_dist_w_select = Partial2DDistribution(
            both_inner_w, log_v_dist_p_select.outer_prob_mass)
        self.tensor_store.keep_inputs("log_v_dist_w_select",
                                      log_v_dist_w_select)

        # Transform distributions back to start reference frame and keep them (for auxiliary objective)
        both_inner_s, v_dist_s_poses_select = self.map_transform_p_to_r(
            log_v_dist_p_select.inner_distribution, v_dist_p_poses_select,
            start_poses_select)
        log_v_dist_s_select = Partial2DDistribution(
            both_inner_s, log_v_dist_p_select.outer_prob_mass)
        self.tensor_store.keep_inputs("log_v_dist_s_select",
                                      log_v_dist_s_select)

        # prime number will mean that it will alternate between sim and real
        if self.get_iter() % 23 == 0:
            lsfm = SpatialSoftmax2d()
            for i in range(S_W_select.shape[0]):
                Presenter().show_image(S_W_select.detach().cpu()[i, 0:3],
                                       f"{self.domain}_s_w_select",
                                       scale=4,
                                       waitkey=1)
                Presenter().show_image(lsfm(
                    log_v_dist_s_select.inner_distribution).detach().cpu()[i],
                                       f"{self.domain}_v_dist_s_select",
                                       scale=4,
                                       waitkey=1)
                Presenter().show_image(lsfm(
                    log_v_dist_p_select.inner_distribution).detach().cpu()[i],
                                       f"{self.domain}_v_dist_p_select",
                                       scale=4,
                                       waitkey=1)
                Presenter().show_image(RS_P_select.detach().cpu()[i, 0:3],
                                       f"{self.domain}_rs_p_select",
                                       scale=4,
                                       waitkey=1)
                break

        self.prof.tick("transform_back")

        # If we're predicting the trajectory only on some timesteps, then for each timestep k, use the map from
        # timestep k if predicting on timestep k. otherwise use the map from timestep j - the last timestep
        # that had a trajectory prediction, rotated in the frame of timestep k.
        if select_only:
            # If we're just pre-training the trajectory prediction, don't waste time on generating the missing maps
            log_v_dist_w = log_v_dist_w_select
            v_dist_w_poses = v_dist_w_poses_select
        else:
            raise NotImplementedError("select_only must be True")

        return_list = [log_v_dist_w, v_dist_w_poses]
        if rl:
            internals_for_rl = {
                "map_coverage_w": SM_W,
                "map_uncoverage_w": 1 - SM_W
            }
            return_list.append(internals_for_rl)

        return tuple(return_list)

    def maybe_cuda(self, tensor):
        return tensor.to(next(self.parameters()).device)

    def cuda_var(self, tensor):
        return tensor.to(next(self.parameters()).device)

    def unbatch(self, batch, halfway=False):
        # Inputs
        images = self.maybe_cuda(batch["images"][0])
        seq_len = len(images)
        instructions = self.maybe_cuda(batch["instr"][0][:seq_len])
        instr_lengths = batch["instr_len"][0][:seq_len]
        states = self.maybe_cuda(batch["states"][0])

        if not halfway:

            plan_mask = batch["plan_mask"][
                0]  # True for every timestep that we do visitation prediction
            firstseg_mask = batch["firstseg_mask"][
                0]  # True for every timestep that is a new instruction segment

            # Labels (including for auxiliary losses)
            lm_pos_fpv = batch["lm_pos_fpv"][
                0]  # All object 2D coordinates in the first-person image
            lm_pos_map_m = batch["lm_pos_map"][
                0]  # All object 2D coordinates in the semantic map
            lm_indices = batch["lm_indices"][0]  # All object class indices
            goal_pos_map_m = batch["goal_loc"][
                0]  # Goal location in the world in meters_and_metrics
            lm_mentioned = batch["lm_mentioned"][
                0]  # 1/0 labels whether object was mentioned/not mentioned in template instruction
            # TODO: We're taking the FIRST label here. SINGLE SEGMENT ASSUMPTION
            lang_lm_mentioned = batch["lang_lm_mentioned"][0][
                0]  # integer labes as to which object was mentioned
            start_poses = batch["start_poses"][0]
            noisy_start_poses = get_noisy_poses_torch(
                start_poses.numpy(),
                self.params["pos_variance"],
                self.params["rot_variance"],
                cuda=False,
                cuda_device=None)

            # Ground truth visitation distributions (in start and global frames)
            v_dist_w_ground_truth_select = self.maybe_cuda(
                batch["traj_ground_truth"][0])
            start_poses_select = self.batch_select.one(
                start_poses, plan_mask, v_dist_w_ground_truth_select.device)
            v_dist_s_ground_truth_select, poses_s = self.map_transform_w_to_s(
                v_dist_w_ground_truth_select, None, start_poses_select)
            #self.tensor_store.keep_inputs("v_dist_w_ground_truth_select", v_dist_w_ground_truth_select)
            self.tensor_store.keep_inputs("v_dist_s_ground_truth_select",
                                          v_dist_s_ground_truth_select)
            #Presenter().show_image(v_dist_s_ground_truth_select.detach().cpu()[0,0], "v_dist_s_ground_truth_select", waitkey=1, scale=4)
            #Presenter().show_image(v_dist_w_ground_truth_select.detach().cpu()[0,0], "v_dist_w_ground_truth_select", waitkey=1, scale=4)

            lm_pos_map_px = [
                torch.from_numpy(
                    transformations.pos_m_to_px(p.numpy(),
                                                self.params["global_map_size"],
                                                self.params["world_size_m"],
                                                self.params["world_size_px"]))
                if p is not None else None for p in lm_pos_map_m
            ]
            goal_pos_map_px = torch.from_numpy(
                transformations.pos_m_to_px(goal_pos_map_m.numpy(),
                                            self.params["global_map_size"],
                                            self.params["world_size_m"],
                                            self.params["world_size_px"]))

            resnet_factor = self.img_to_features_w.img_to_features.get_downscale_factor(
            )
            lm_pos_fpv = [
                self.cuda_var(
                    (s / resnet_factor).long()) if s is not None else None
                for s in lm_pos_fpv
            ]
            lm_indices = [
                self.cuda_var(s) if s is not None else None for s in lm_indices
            ]
            lm_mentioned = [
                self.cuda_var(s) if s is not None else None
                for s in lm_mentioned
            ]
            lang_lm_mentioned = self.cuda_var(lang_lm_mentioned)
            lm_pos_map_px = [
                self.cuda_var(s.long()) if s is not None else None
                for s in lm_pos_map_px
            ]
            goal_pos_map_px = self.cuda_var(goal_pos_map_px)

            self.tensor_store.keep_inputs("lm_pos_fpv", lm_pos_fpv)
            self.tensor_store.keep_inputs("lm_pos_map", lm_pos_map_px)
            self.tensor_store.keep_inputs("lm_indices", lm_indices)
            self.tensor_store.keep_inputs("lm_mentioned", lm_mentioned)
            self.tensor_store.keep_inputs("lang_lm_mentioned",
                                          lang_lm_mentioned)
            self.tensor_store.keep_inputs("goal_pos_map", goal_pos_map_px)

            lm_pos_map_select = [
                lm_pos for i, lm_pos in enumerate(lm_pos_map_px)
                if plan_mask[i]
            ]
            lm_indices_select = [
                lm_idx for i, lm_idx in enumerate(lm_indices) if plan_mask[i]
            ]
            lm_mentioned_select = [
                lm_m for i, lm_m in enumerate(lm_mentioned) if plan_mask[i]
            ]
            goal_pos_map_select = [
                pos for i, pos in enumerate(goal_pos_map_px) if plan_mask[i]
            ]

            self.tensor_store.keep_inputs("lm_pos_map_select",
                                          lm_pos_map_select)
            self.tensor_store.keep_inputs("lm_indices_select",
                                          lm_indices_select)
            self.tensor_store.keep_inputs("lm_mentioned_select",
                                          lm_mentioned_select)
            self.tensor_store.keep_inputs("goal_pos_map_select",
                                          goal_pos_map_select)

        # We won't need this extra information
        else:
            noisy_poses, start_poses, noisy_start_poses = None, None, None
            plan_mask, firstseg_mask = None, None

        metadata = batch["md"][0][0]
        env_id = metadata["env_id"]
        self.tensor_store.set_flag("env_id", env_id)

        return images, states, instructions, instr_lengths, plan_mask, firstseg_mask, start_poses, noisy_start_poses, metadata

    # Forward pass for training
    def sup_loss_on_batch(self,
                          batch,
                          eval,
                          halfway=False,
                          grad_noise=False,
                          disable_losses=[]):
        self.prof.tick("out")
        self.reset()

        if batch is None:
            print("Skipping None Batch")
            zero = torch.zeros([1]).float().to(next(self.parameters()).device)
            return zero, self.tensor_store

        images, states, instructions, instr_len, plan_mask, firstseg_mask, \
         start_poses, noisy_start_poses, metadata = self.unbatch(batch, halfway=halfway)
        self.prof.tick("unbatch_inputs")

        # ----------------------------------------------------------------------------
        _ = self(images,
                 states,
                 instructions,
                 instr_len,
                 plan=plan_mask,
                 firstseg=firstseg_mask,
                 noisy_start_poses=start_poses if eval else noisy_start_poses,
                 start_poses=start_poses,
                 select_only=True,
                 halfway=halfway,
                 grad_noise=grad_noise)
        # ----------------------------------------------------------------------------

        if self.should_save_path_overlays:
            self.save_path_overlays(metadata)

        # If we run the model halfway, we only need to calculate features needed for the wasserstein loss
        # If we want to include more features in wasserstein critic, have to run the forward pass a bit further
        if halfway and not halfway == "v2":
            return None, self.tensor_store

        # The returned values are not used here - they're kept in the tensor store which is used as an input to a loss
        self.prof.tick("call")

        if not halfway:
            # Calculate goal-prediction accuracy:
            goal_pos = self.tensor_store.get_inputs_batch("goal_pos_map",
                                                          cat_not_stack=True)
            success_goal = self.goal_good_criterion(
                self.tensor_store.get_inputs_batch("log_v_dist_w_select",
                                                   cat_not_stack=True),
                goal_pos)
            acc = 1.0 if success_goal else 0.0
            self.goal_acc_meter.put(acc)
            goal_visible = self.goal_visible(
                self.tensor_store.get_inputs_batch("M_w", cat_not_stack=True),
                goal_pos)
            if goal_visible:
                self.visible_goal_acc_meter.put(acc)
            else:
                self.invisible_goal_acc_meter.put(acc)
            self.visible_goal_frac_meter.put(1.0 if goal_visible else 0.0)

            self.correct_goals += acc
            self.total_goals += 1

            self.prof.tick("goal_acc")

        if halfway == "v2":
            disable_losses = ["visitation_dist", "lang"]

        losses, metrics = self.losses.calculate_aux_loss(
            tensor_store=self.tensor_store,
            reduce_average=True,
            disable_losses=disable_losses)
        loss = self.losses.combine_losses(losses, self.aux_weights)

        self.prof.tick("calc_losses")

        prefix = self.model_name + ("/eval" if eval else "/train")
        iteration = self.get_iter()
        self.writer.add_dict(prefix, get_current_meters(), iteration)
        self.writer.add_dict(prefix, losses, iteration)
        self.writer.add_dict(prefix, metrics, iteration)

        if not halfway:
            self.writer.add_scalar(prefix + "/goal_accuracy",
                                   self.goal_acc_meter.get(), iteration)
            self.writer.add_scalar(prefix + "/visible_goal_accuracy",
                                   self.visible_goal_acc_meter.get(),
                                   iteration)
            self.writer.add_scalar(prefix + "/invisible_goal_accuracy",
                                   self.invisible_goal_acc_meter.get(),
                                   iteration)
            self.writer.add_scalar(prefix + "/visible_goal_fraction",
                                   self.visible_goal_frac_meter.get(),
                                   iteration)

        self.inc_iter()

        self.prof.tick("summaries")
        self.prof.loop()
        self.prof.print_stats(1)

        return loss, self.tensor_store

    def get_dataset(self,
                    data=None,
                    envs=None,
                    domain=None,
                    dataset_names=None,
                    dataset_prefix=None,
                    eval=False,
                    halfway_only=False):
        # TODO: Maybe use eval here
        data_sources = []
        # If we're running auxiliary objectives, we need to include the data sources for the auxiliary labels
        #if self.use_aux_class_features or self.use_aux_class_on_map or self.use_aux_grounding_features or self.use_aux_grounding_on_map:
        #if self.use_aux_goal_on_map:
        if not halfway_only:
            data_sources.append(aup.PROVIDER_LM_POS_DATA)
            data_sources.append(aup.PROVIDER_GOAL_POS)

            # Adding these in this order will compute poses with added noise and compute trajectory ground truth
            # in the reference frame of these noisy poses
            data_sources.append(aup.PROVIDER_START_POSES)

            if self.do_perturb_maps:
                print("PERTURBING MAPS!")
                # TODO: The noisy poses from the provider are not actually used!! Those should replace states instead!
                data_sources.append(aup.PROVIDER_NOISY_POSES)
                # TODO: Think this through. Perhaps we actually want dynamic ground truth given a noisy start position
                if self.params["predict_in_start_frame"]:
                    data_sources.append(
                        aup.PROVIDER_TRAJECTORY_GROUND_TRUTH_STATIC)
                else:
                    data_sources.append(
                        aup.PROVIDER_TRAJECTORY_GROUND_TRUTH_DYNAMIC_NOISY)
            else:
                print("NOT Perturbing Maps!")
                data_sources.append(aup.PROVIDER_NOISY_POSES)
                if self.params["predict_in_start_frame"]:
                    data_sources.append(
                        aup.PROVIDER_TRAJECTORY_GROUND_TRUTH_STATIC)
                else:
                    data_sources.append(
                        aup.PROVIDER_TRAJECTORY_GROUND_TRUTH_DYNAMIC)

            data_sources.append(aup.PROVIDER_LANDMARKS_MENTIONED)

            templates = get_current_parameters()["Environment"]["templates"]
            if templates:
                data_sources.append(aup.PROVIDER_LANG_TEMPLATE)

        return SegmentDataset(data=data,
                              env_list=envs,
                              domain=domain,
                              dataset_names=dataset_names,
                              dataset_prefix=dataset_prefix,
                              aux_provider_names=data_sources,
                              segment_level=True)
Esempio n. 14
0
class GoalAuxiliary2D(AuxiliaryObjective):
    def __init__(self, name, channels_in=32, map_size_px=32, *inputs):
        super(GoalAuxiliary2D, self).__init__(name, *inputs)
        self.gather_2d = Gather2D()

        self.map_size_px = map_size_px
        self.channels_in = channels_in
        self.goal_linear = nn.Linear(channels_in, 2)
        enable_weight_saving(self.goal_linear, "aux_goal_linear_" + name)
        self.loss = nn.CrossEntropyLoss()
        self.accuracy_meter = MovingAverageMeter(10)

    def cuda(self, device=None):
        AuxiliaryObjective.cuda(self, device)
        return self

    def plot_pts(self, image, pts):
        """
        :param image: CxHxW image
        :param pts: Nx2 points - (H,W) coords in the image
        :return:
        """
        image = image.cpu().data.numpy()
        image = image.transpose((1, 2, 0))
        pts = pts.cpu().data.numpy()
        image[:, :, 1] = 0.0
        for pt in pts:
            image[pt[0], pt[1], 0] = 1.0

        Presenter().show_image(image[:, :, 0:3],
                               "aux_goal_" + self.name,
                               torch=False,
                               waitkey=True,
                               scale=8)

    def forward(self, map, goal_pos):
        batch_size = len(map)

        map = torch.cat(map, dim=0)

        if map.size(1) > self.channels_in:
            map = map[:, 0:self.channels_in, :, :]

        loss_out = None
        for i in range(batch_size):

            goal_coords_in_map = goal_pos[i].long()
            map_i = map[i:i + 1]

            #goal_coords_in_map = pos_m_to_px(goal_pos_i, self.map_size_px, self.world_size_m, self.world_size_px).long()
            neg_samples = 1
            neg_coords_size = list(goal_coords_in_map.size())
            neg_coords_size[0] = neg_coords_size[0] * neg_samples
            all_coords_size = list(goal_coords_in_map.size())
            all_coords_size[0] += neg_coords_size[0]

            goal_negative_coords_in_map = empty_float_tensor(neg_coords_size)
            range_min = 0
            range_max = self.map_size_px
            goal_negative_coords_in_map.uniform_(range_min, range_max)
            goal_negative_coords_in_map = goal_negative_coords_in_map.long(
            ).to(goal_coords_in_map.device)

            sample_pt_coords = torch.cat(
                [goal_coords_in_map, goal_negative_coords_in_map],
                dim=0).long()
            sample_pt_labels = torch.zeros([all_coords_size[0]]).long().to(
                goal_coords_in_map.device)
            sample_pt_labels[0] = 1
            sample_pt_labels[1:] = 0

            sample_pt_features = self.gather_2d(map_i, sample_pt_coords)

            if DBG:
                self.plot_pts(map[0], sample_pt_coords)

            pt_predictions = self.goal_linear(sample_pt_features)
            aux_loss_goal = self.loss(pt_predictions, sample_pt_labels)

            _, pred_idx = torch.max(pt_predictions.data, 1)
            correct = torch.sum((pred_idx == sample_pt_labels.data).long())
            total = float(len(sample_pt_labels))
            accuracy = float(correct.item()) / total
            self.accuracy_meter.put(accuracy)
            log_value(self.name + "/accuracy", self.accuracy_meter.get())

            if loss_out is None:
                loss_out = aux_loss_goal
            else:
                loss_out += aux_loss_goal

            # TODO: Consider batch size / count

        return loss_out, batch_size