Esempio n. 1
0
def calculate_distances(data, centroids, data_dots):
    centroid_dots = np.square(np.linalg.norm(centroids, ord=2, axis=1))
    pairwise_distances = (data_dots[:, np.newaxis] +
                          centroid_dots[np.newaxis, :])
    # ||x-y||^2 = ||x||^2 + ||y||^2 - 2 x . y
    # pairwise_distances has ||x||^2 + ||y||^2, so beta = 1
    # The gemm calculates x.y for all x and y, so alpha = -2.0
    pairwise_distances -= 2.0 * np.dot(data, centroids.T)
    return pairwise_distances
Esempio n. 2
0
def run_kmeans(C, D, T, I, N, S, benchmarking):  # noqa: E741
    print("Running kmeans...")
    print("Number of data points: " + str(N))
    print("Number of dimensions: " + str(D))
    print("Number of centroids: " + str(C))
    print("Max iterations: " + str(I))
    start = datetime.datetime.now()
    data, centroids = initialize(N, D, C, T)

    data_dots = np.square(np.linalg.norm(data, ord=2, axis=1))
    data_index = np.linspace(0, N - 1, N, dtype=np.int)

    labels = None
    iteration = 0
    prior_distance_sum = None
    # We run for max iterations or until we converge
    # We only test convergence every S iterations
    while iteration < I:
        pairwise_distances = calculate_distances(data, centroids, data_dots)

        new_labels, distances = relabel(pairwise_distances, data_index)
        distance_sum = np.sum(distances)

        centroids = find_centroids(data, new_labels, C, D)

        if iteration > 0 and iteration % S == 0:
            changes = np.not_equal(labels, new_labels)
            total_changes = np.sum(changes)
            delta = distance_sum / prior_distance_sum
            print("Iteration " + str(iteration) + " produced " +
                  str(total_changes) + " changes, and total distance is " +
                  str(distance_sum))
            # We ignore the result of the threshold test in the case that we
            # are running performance benchmarks to measure performance for a
            # certain number of iterations
            if delta > 1 - 0.000001 and not benchmarking:
                print("Threshold triggered, terminating iterations early")
                break
        prior_distance_sum = distance_sum
        labels = new_labels
        iteration += 1
    # This final distance sum also synchronizes the results
    print("Final distance sum at iteration " + str(iteration) + ": " +
          str(prior_distance_sum))
    stop = datetime.datetime.now()
    delta = stop - start
    total = delta.total_seconds() * 1000.0
    print("Elapsed Time: " + str(total) + " ms")
    return total