Esempio n. 1
0
def test_implicit_bpr_train_rec():
    algo = BPR(25)
    ratings = lktu.ml_pandas.renamed.ratings

    algo.fit(ratings)

    recs = algo.recommend(100, n=20)
    assert len(recs) == 20
Esempio n. 2
0
def test_implicit_bpr_train_rec():
    algo = BPR(25)
    assert algo.factors == 25
    ratings = lktu.ml_pandas.renamed.ratings

    algo.fit(ratings)

    recs = algo.recommend(100, n=20)
    assert len(recs) == 20

    _log.info('serializing implicit model')
    mod = pickle.dumps(algo)
    _log.info('serialized to %d bytes')
    a2 = pickle.loads(mod)

    r2 = a2.recommend(100, n=20)
    assert len(r2) == 20
    assert all(r2 == recs)
Esempio n. 3
0
def test_implicit_bpr_train_rec():
    algo = BPR(25, use_gpu=False)
    assert algo.factors == 25
    ratings = lktu.ml_test.ratings

    algo.fit(ratings)

    recs = algo.recommend(100, n=20)
    assert len(recs) == 20

    preds = algo.predict_for_user(100, [20, 30, 23148010])
    assert all(preds.index == [20, 30, 23148010])
    assert all(preds.isna() == [False, False, True])

    _log.info('serializing implicit model')
    mod = pickle.dumps(algo)
    _log.info('serialized to %d bytes')
    a2 = pickle.loads(mod)

    r2 = a2.recommend(100, n=20)
    assert len(r2) == 20
    assert all(r2 == recs)