def test_visualize(): #This fails if GSL is not installed try: design = Design() except ImportError: return #Add the dimensions design.add_parameter("Omega_m", min=0.1, max=0.9, label=r"$\Omega_m$") design.add_parameter("w", min=-2.0, max=-0.1, label=r"$w$") design.add_parameter("sigma8", min=0.01, max=1.6, label=r"$\sigma_8$") #Lay down 50 points design.put_points(50) print(design) #The cost function should be the diagonal one np.testing.assert_approx_equal(design.diagonalCost(Lambda=1.0), design.cost(p=2.0, Lambda=1.0)) #Visualize the 3d diagonal configuration design.visualize(color="blue") design.set_title("Cost={0:.2f}".format(design.diagonalCost(Lambda=1.0))) design.savefig("design_diagonal_3d.png") #Visualize the 2d (Om,si8) projection fig, ax = plt.subplots() design.visualize(fig=fig, ax=ax, parameters=["Omega_m", "sigma8"], color="red", marker=".") design.savefig("design_diagonal_2d.png") #Now perform the sampling of the parameter space deltaPerc = design.sample(Lambda=1.0, p=2.0, seed=1, maxIterations=100000) #Visualize the 3d configuration design.visualize(color="blue") design.set_title("Cost={0:.2f}".format(design.cost(Lambda=1.0, p=2.0))) design.savefig("design_3d.png") #Visualize the 2d (Om,si8) projection fig, ax = plt.subplots() design.visualize(fig=fig, ax=ax, parameters=["Omega_m", "sigma8"], color="red", marker=".") design.savefig("design_2d.png") #Visualize the changes in the cost function fig, ax = plt.subplots() ax.plot(design.cost_values) ax.set_xlabel(r"$N$") ax.set_ylabel("cost") ax.set_title("Last change={0:.1e}%".format(deltaPerc * 100)) ax.set_xscale("log") fig.savefig("cost.png")
def test_visualize(): #This fails if GSL is not installed try: design = Design() except ImportError: return #Add the dimensions design.add_parameter("Omega_m",min=0.1,max=0.9,label=r"$\Omega_m$") design.add_parameter("w",min=-2.0,max=-0.1,label=r"$w$") design.add_parameter("sigma8",min=0.01,max=1.6,label=r"$\sigma_8$") #Lay down 50 points design.put_points(50) print(design) #The cost function should be the diagonal one np.testing.assert_approx_equal(design.diagonalCost(Lambda=1.0),design.cost(p=2.0,Lambda=1.0)) #Visualize the 3d diagonal configuration design.visualize(color="blue") design.set_title("Cost={0:.2f}".format(design.diagonalCost(Lambda=1.0))) design.savefig("design_diagonal_3d.png") #Visualize the 2d (Om,si8) projection fig,ax = plt.subplots() design.visualize(fig=fig,ax=ax,parameters=["Omega_m","sigma8"],color="red",marker=".") design.savefig("design_diagonal_2d.png") #Now perform the sampling of the parameter space deltaPerc = design.sample(Lambda=1.0,p=2.0,seed=1,maxIterations=100000) #Visualize the 3d configuration design.visualize(color="blue") design.set_title("Cost={0:.2f}".format(design.cost(Lambda=1.0,p=2.0))) design.savefig("design_3d.png") #Visualize the 2d (Om,si8) projection fig,ax = plt.subplots() design.visualize(fig=fig,ax=ax,parameters=["Omega_m","sigma8"],color="red",marker=".") design.savefig("design_2d.png") #Visualize the changes in the cost function fig,ax = plt.subplots() ax.plot(design.cost_values) ax.set_xlabel(r"$N$") ax.set_ylabel("cost") ax.set_title("Last change={0:.1e}%".format(deltaPerc*100)) ax.set_xscale("log") fig.savefig("cost.png")
design.add_parameter("Omega_m", min=0.1, max=0.9, label=r"$\Omega_m$") design.add_parameter("w", min=-2.0, max=-0.1, label=r"$w$") design.add_parameter("sigma8", min=0.01, max=1.6, label=r"$\sigma_8$") #Lay down 50 points design.put_points(50) print(design) #The cost function should be the diagonal one np.testing.assert_approx_equal(design.diagonalCost(Lambda=1.0), design.cost(p=2.0, Lambda=1.0)) #Visualize the 3d diagonal configuration design.visualize(color="blue") design.set_title("Cost={0:.2f}".format(design.diagonalCost(Lambda=1.0))) design.savefig("design_diagonal_3d.png") #Visualize the 2d (Om,si8) projection fig, ax = plt.subplots() design.visualize(fig=fig, ax=ax, parameters=["Omega_m", "sigma8"], color="red", marker=".") design.savefig("design_diagonal_2d.png") #Now perform the sampling of the parameter space deltaPerc = design.sample(Lambda=1.0, p=2.0, seed=1, maxIterations=100000) #Visualize the 3d configuration design.visualize(color="blue")
#Add the dimensions design.add_parameter("Omega_m",min=0.1,max=0.9,label=r"$\Omega_m$") design.add_parameter("w",min=-2.0,max=-0.1,label=r"$w$") design.add_parameter("sigma8",min=0.01,max=1.6,label=r"$\sigma_8$") #Lay down 50 points design.put_points(50) print(design) #The cost function should be the diagonal one np.testing.assert_approx_equal(design.diagonalCost(Lambda=1.0),design.cost(p=2.0,Lambda=1.0)) #Visualize the 3d diagonal configuration design.visualize(color="blue") design.set_title("Cost={0:.2f}".format(design.diagonalCost(Lambda=1.0))) design.savefig("design_diagonal_3d.png") #Visualize the 2d (Om,si8) projection fig,ax = plt.subplots() design.visualize(fig=fig,ax=ax,parameters=["Omega_m","sigma8"],color="red",marker=".") design.savefig("design_diagonal_2d.png") #Now perform the sampling of the parameter space deltaPerc = design.sample(Lambda=1.0,p=2.0,seed=1,maxIterations=100000) #Visualize the 3d configuration design.visualize(color="blue") design.set_title("Cost={0:.2f}".format(design.cost(Lambda=1.0,p=2.0))) design.savefig("design_3d.png") #Visualize the 2d (Om,si8) projection