Esempio n. 1
0
 def setup(self):
     self.sersic = Sersic(smoothing=0.02)
     self.sersic_elliptic = Sersic_elliptic(smoothing=0.02)
     self.double_sersic = DoubleSersic(smoothing=0.02)
     self.core_sersic = CoreSersic(smoothing=0.02)
     self.double_core_sersic = DoubleCoreSersic(smoothing=0.02)
     self.buldge_disk = BuldgeDisk(smoothing=0.02)
Esempio n. 2
0
 def __init__(self, light_model_list, smoothing=0.0000001):
     self.profile_type_list = light_model_list
     self.func_list = []
     for profile_type in light_model_list:
         valid = True
         if profile_type == 'GAUSSIAN':
             from lenstronomy.LightModel.Profiles.gaussian import Gaussian
             self.func_list.append(Gaussian())
         elif profile_type == 'GAUSSIAN_ELLIPSE':
             from lenstronomy.LightModel.Profiles.gaussian import GaussianEllipse
             self.func_list.append(GaussianEllipse())
         elif profile_type == 'MULTI_GAUSSIAN':
             from lenstronomy.LightModel.Profiles.gaussian import MultiGaussian
             self.func_list.append(MultiGaussian())
         elif profile_type == 'MULTI_GAUSSIAN_ELLIPSE':
             from lenstronomy.LightModel.Profiles.gaussian import MultiGaussianEllipse
             self.func_list.append(MultiGaussianEllipse())
         elif profile_type == 'SERSIC':
             from lenstronomy.LightModel.Profiles.sersic import Sersic
             self.func_list.append(Sersic(smoothing=smoothing))
         elif profile_type == 'SERSIC_ELLIPSE':
             from lenstronomy.LightModel.Profiles.sersic import Sersic_elliptic
             self.func_list.append(Sersic_elliptic(smoothing=smoothing))
         elif profile_type == 'CORE_SERSIC':
             from lenstronomy.LightModel.Profiles.sersic import CoreSersic
             self.func_list.append(CoreSersic(smoothing=smoothing))
         elif profile_type == 'SHAPELETS':
             from lenstronomy.LightModel.Profiles.shapelets import ShapeletSet
             self.func_list.append(ShapeletSet())
         elif profile_type == 'HERNQUIST':
             from lenstronomy.LightModel.Profiles.hernquist import Hernquist
             self.func_list.append(Hernquist())
         elif profile_type == 'HERNQUIST_ELLIPSE':
             from lenstronomy.LightModel.Profiles.hernquist import Hernquist_Ellipse
             self.func_list.append(Hernquist_Ellipse())
         elif profile_type == 'PJAFFE':
             from lenstronomy.LightModel.Profiles.p_jaffe import PJaffe
             self.func_list.append(PJaffe())
         elif profile_type == 'PJAFFE_ELLIPSE':
             from lenstronomy.LightModel.Profiles.p_jaffe import PJaffe_Ellipse
             self.func_list.append(PJaffe_Ellipse())
         elif profile_type == 'UNIFORM':
             from lenstronomy.LightModel.Profiles.uniform import Uniform
             self.func_list.append(Uniform())
         elif profile_type == 'POWER_LAW':
             from lenstronomy.LightModel.Profiles.power_law import PowerLaw
             self.func_list.append(PowerLaw())
         elif profile_type == 'NIE':
             from lenstronomy.LightModel.Profiles.nie import NIE
             self.func_list.append(NIE())
         elif profile_type == 'CHAMELEON':
             from lenstronomy.LightModel.Profiles.chameleon import Chameleon
             self.func_list.append(Chameleon())
         elif profile_type == 'DOUBLE_CHAMELEON':
             from lenstronomy.LightModel.Profiles.chameleon import DoubleChameleon
             self.func_list.append(DoubleChameleon())
         else:
             raise ValueError('Warning! No light model of type', profile_type, ' found!')
Esempio n. 3
0
class TestSersic(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        self.sersic = Sersic(smoothing=0.02)
        self.sersic_elliptic = Sersic_elliptic(smoothing=0.02)
        self.double_sersic = DoubleSersic(smoothing=0.02)
        self.core_sersic = CoreSersic(smoothing=0.02)
        self.double_core_sersic = DoubleCoreSersic(smoothing=0.02)
        self.buldge_disk = BuldgeDisk(smoothing=0.02)

    def test_sersic(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        center_x = 0
        center_y = 0
        values = self.sersic.function(x, y, I0_sersic, R_sersic, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.12658651833626802, decimal=6)
        x = np.array([0])
        y = np.array([0])
        values = self.sersic.function( x, y, I0_sersic, R_sersic, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values[0],  5.1482559148107292, decimal=2)

        x = np.array([2,3,4])
        y = np.array([1,1,1])
        values = self.sersic.function( x, y, I0_sersic, R_sersic, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.12658651833626802, decimal=6)
        npt.assert_almost_equal(values[1], 0.026902273598180083, decimal=6)
        npt.assert_almost_equal(values[2], 0.0053957432862338055, decimal=6)

    def test_symmetry_r_sersic(self):
        x = np.array([2,3,4])
        y = np.array([1,1,1])
        I0_sersic = 1
        R_sersic1 = 1
        R_sersic2 = 0.1
        n_sersic = 1
        center_x = 0
        center_y = 0
        values1 = self.sersic.function(x*R_sersic1, y*R_sersic1, I0_sersic, R_sersic1, n_sersic, center_x, center_y)
        values2 = self.sersic.function(x*R_sersic2, y*R_sersic2, I0_sersic, R_sersic2, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values1[0], values2[0], decimal=6)
        npt.assert_almost_equal(values1[1], values2[1], decimal=6)
        npt.assert_almost_equal(values1[2], values2[2], decimal=6)

    def test_sersic_center(self):
        x = 0.01
        y = 0.
        I0_sersic = 1
        R_sersic = 0.1
        n_sersic = 4.
        center_x = 0
        center_y = 0
        values = self.sersic.function(x, y, I0_sersic, R_sersic, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values, 12.688073819377406, decimal=6)

    def test_sersic_elliptic(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        phi_G = 1
        q = 0.9
        center_x = 0
        center_y = 0
        values = self.sersic_elliptic.function(x, y, I0_sersic, R_sersic, n_sersic, phi_G, q, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.12595366113005077, decimal=6)
        x = np.array([0])
        y = np.array([0])
        values = self.sersic_elliptic.function(x, y, I0_sersic, R_sersic, n_sersic, phi_G, q, center_x, center_y)
        npt.assert_almost_equal(values[0], 5.1482553482055664, decimal=2)

        x = np.array([2,3,4])
        y = np.array([1,1,1])
        values = self.sersic_elliptic.function(x, y, I0_sersic, R_sersic, n_sersic, phi_G, q, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.11308277793465012, decimal=6)
        npt.assert_almost_equal(values[1], 0.021188620675507107, decimal=6)
        npt.assert_almost_equal(values[2], 0.0037276744362724477, decimal=6)

    def test_core_sersic(self):
        x = np.array([1])
        y = np.array([2])
        I0 = 1
        Rb = 1
        Re = 2
        gamma = 3
        n = 1
        phi_G = 1
        q = 0.9
        center_x = 0
        center_y = 0
        values = self.core_sersic.function(x, y, I0, Rb, Re, n, gamma, phi_G, q, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.84489101, decimal=8)
        x = np.array([0])
        y = np.array([0])
        values = self.core_sersic.function(x, y, I0, Rb, Re, n, gamma, phi_G, q, center_x, center_y)
        npt.assert_almost_equal(values[0], 288406.09, decimal=0)

        x = np.array([2,3,4])
        y = np.array([1,1,1])
        values = self.core_sersic.function(x, y, I0, Rb, Re, n, gamma, phi_G, q, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.79749529635325933, decimal=6)
        npt.assert_almost_equal(values[1], 0.33653478121594838, decimal=6)
        npt.assert_almost_equal(values[2], 0.14050402887681532, decimal=6)

    def test_double_sersic(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        phi_G = 1
        q = 0.9
        I0_2 = 0.1
        R_2 = 2
        n_2 = 2
        phi_G_2 = 1
        q_2 = 1
        center_x = 0
        center_y = 0
        values = self.double_sersic.function(x, y, I0_sersic, R_sersic, n_sersic, phi_G, q, I0_2, R_2, n_2, phi_G_2, q_2, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.20696126663199443, decimal=8)
        x = np.array([0])
        y = np.array([0])
        values = self.double_sersic.function(x, y, I0_sersic, R_sersic, n_sersic, phi_G, q, I0_2, R_2, n_2, phi_G_2, q_2, center_x, center_y)
        npt.assert_almost_equal(values[0], 7.8708484172821045, decimal=8)

        x = np.array([2,3,4])
        y = np.array([1,1,1])
        values = self.double_sersic.function(x, y, I0_sersic, R_sersic, n_sersic, phi_G, q, I0_2, R_2, n_2, phi_G_2, q_2, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.19409037374964733, decimal=8)
        npt.assert_almost_equal(values[1], 0.060052096255106595, decimal=8)
        npt.assert_almost_equal(values[2], 0.023917479151437715, decimal=8)

    def test_double_sersic_function_split(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        phi_G = 1
        q = 0.9
        I0_2 = 0.1
        R_2 = 2
        n_2 = 2
        phi_G_2 = 1
        q_2 = 1
        center_x = 0
        center_y = 0
        func_1, func_2 = self.double_sersic.function_split(x, y, I0_sersic, R_sersic, n_sersic, phi_G, q, I0_2, R_2, n_2, phi_G_2, q_2, center_x, center_y)
        npt.assert_almost_equal(func_1[0], 0.12595365941524506)
        npt.assert_almost_equal(func_2[0], 0.081007614731788635)

    def test_double_core_sersic(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        phi_G = 1
        q = 0.9
        I0_2 = 0.1
        R_2 = 2
        n_2 = 2
        Re = 0.1
        gamma = 2
        values = self.double_core_sersic.function(x, y, I0_sersic, Re, R_sersic, n_sersic, gamma, phi_G, q, I0_2, R_2, n_2, phi_G_2=0, q_2=1, center_x=0, center_y=0)
        npt.assert_almost_equal(values[0], 0.20695476233959198, decimal=5)
        x = np.array([0])
        y = np.array([0])
        values = self.double_core_sersic.function(x, y, I0_sersic, Re, R_sersic, n_sersic, gamma, phi_G, q, I0_2, R_2, n_2, phi_G_2=0, q_2=1, center_x=0, center_y=0)
        npt.assert_almost_equal(values[0], 115.86341203723811, decimal=5)

        x = np.array([2,3,4])
        y = np.array([1,1,1])
        values = self.double_core_sersic.function(x, y, I0_sersic, Re, R_sersic, n_sersic, gamma, phi_G, q, I0_2, R_2, n_2, phi_G_2=0, q_2=1, center_x=0, center_y=0)
        npt.assert_almost_equal(values[0], 0.19408468241596671, decimal=5)
        npt.assert_almost_equal(values[1], 0.060051398351788521, decimal=5)
        npt.assert_almost_equal(values[2], 0.023917404236271977, decimal=5)

    def test_double_core_sersic_function_split(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        phi_G = 1
        q = 0.9
        I0_2 = 0.1
        R_2 = 2
        n_2 = 2
        Re = 0.1
        gamma = 2
        func_1, func_2 = self.double_core_sersic.function_split(x, y, I0_sersic, Re, R_sersic, n_sersic, gamma, phi_G, q, I0_2, R_2, n_2, phi_G_2=0, q_2=1, center_x=0, center_y=0)
        npt.assert_almost_equal(func_1[0], 0.12594715)
        npt.assert_almost_equal(func_2[0], 0.081007614731788635)

    def test_buldge_disk(self):
        x = np.array([1])
        y = np.array([2])
        I0_b = 1
        R_b = 1
        phi_G_b = 0
        q_b = 0.9
        I0_d = 1
        R_d = 2
        phi_G_d = 0
        q_d = 0.7

        values = self.buldge_disk.function(x, y, I0_b, R_b, phi_G_b, q_b, I0_d, R_d, phi_G_d, q_d, center_x=0, center_y=0)
        npt.assert_almost_equal(values[0], 0.57135696709156036, decimal=8)
        x = np.array([0])
        y = np.array([0])
        values = self.buldge_disk.function(x, y, I0_b, R_b, phi_G_b, q_b, I0_d, R_d, phi_G_d, q_d, center_x=0, center_y=0)
        npt.assert_almost_equal(values[0], 124.98796224594116, decimal=8)

        x = np.array([2,3,4])
        y = np.array([1,1,1])
        values = self.buldge_disk.function(x, y, I0_b, R_b, phi_G_b, q_b, I0_d, R_d, phi_G_d, q_d, center_x=0, center_y=0)
        npt.assert_almost_equal(values[0], 0.85350380837917328, decimal=8)
        npt.assert_almost_equal(values[1], 0.40610484033823013, decimal=8)
        npt.assert_almost_equal(values[2], 0.19044427201151848, decimal=8)

    def test_buldge_disk_function_split(self):
        x = np.array([1])
        y = np.array([2])
        I0_b = 1
        R_b = 1
        phi_G_b = 0
        q_b = 0.9
        I0_d = 1
        R_d = 2
        phi_G_d = 0
        q_d = 0.7
        func_1, func_2 = self.buldge_disk.function_split(x, y, I0_b, R_b, phi_G_b, q_b, I0_d, R_d, phi_G_d, q_d, center_x=0, center_y=0)
        npt.assert_almost_equal(func_1[0], 0.1476433128118515)
        npt.assert_almost_equal(func_2[0], 0.42371365427970886)
Esempio n. 4
0
    def __init__(self, light_model_list, smoothing=0.001):
        """

        :param light_model_list: list of light models
        :param smoothing: smoothing factor for certain models (deprecated)
        """
        self.profile_type_list = light_model_list
        self.func_list = []
        for profile_type in light_model_list:
            if profile_type == 'GAUSSIAN':
                from lenstronomy.LightModel.Profiles.gaussian import Gaussian
                self.func_list.append(Gaussian())
            elif profile_type == 'GAUSSIAN_ELLIPSE':
                from lenstronomy.LightModel.Profiles.gaussian import GaussianEllipse
                self.func_list.append(GaussianEllipse())
            elif profile_type == 'ELLIPSOID':
                from lenstronomy.LightModel.Profiles.ellipsoid import Ellipsoid
                self.func_list.append(Ellipsoid())
            elif profile_type == 'MULTI_GAUSSIAN':
                from lenstronomy.LightModel.Profiles.gaussian import MultiGaussian
                self.func_list.append(MultiGaussian())
            elif profile_type == 'MULTI_GAUSSIAN_ELLIPSE':
                from lenstronomy.LightModel.Profiles.gaussian import MultiGaussianEllipse
                self.func_list.append(MultiGaussianEllipse())
            elif profile_type == 'SERSIC':
                from lenstronomy.LightModel.Profiles.sersic import Sersic
                self.func_list.append(Sersic(smoothing=smoothing))
            elif profile_type == 'SERSIC_ELLIPSE':
                from lenstronomy.LightModel.Profiles.sersic import SersicElliptic
                self.func_list.append(
                    SersicElliptic(smoothing=smoothing,
                                   sersic_major_axis=sersic_major_axis_conf))
            elif profile_type == 'CORE_SERSIC':
                from lenstronomy.LightModel.Profiles.sersic import CoreSersic
                self.func_list.append(CoreSersic(smoothing=smoothing))
            elif profile_type == 'SHAPELETS':
                from lenstronomy.LightModel.Profiles.shapelets import ShapeletSet
                self.func_list.append(ShapeletSet())
            elif profile_type == 'SHAPELETS_POLAR':
                from lenstronomy.LightModel.Profiles.shapelets_polar import ShapeletSetPolar
                self.func_list.append(ShapeletSetPolar(exponential=False))
            elif profile_type == 'SHAPELETS_POLAR_EXP':
                from lenstronomy.LightModel.Profiles.shapelets_polar import ShapeletSetPolar
                self.func_list.append(ShapeletSetPolar(exponential=True))
            elif profile_type == 'HERNQUIST':
                from lenstronomy.LightModel.Profiles.hernquist import Hernquist
                self.func_list.append(Hernquist())
            elif profile_type == 'HERNQUIST_ELLIPSE':
                from lenstronomy.LightModel.Profiles.hernquist import HernquistEllipse
                self.func_list.append(HernquistEllipse())
            elif profile_type == 'PJAFFE':
                from lenstronomy.LightModel.Profiles.p_jaffe import PJaffe
                self.func_list.append(PJaffe())
            elif profile_type == 'PJAFFE_ELLIPSE':
                from lenstronomy.LightModel.Profiles.p_jaffe import PJaffe_Ellipse
                self.func_list.append(PJaffe_Ellipse())
            elif profile_type == 'UNIFORM':
                from lenstronomy.LightModel.Profiles.uniform import Uniform
                self.func_list.append(Uniform())
            elif profile_type == 'POWER_LAW':
                from lenstronomy.LightModel.Profiles.power_law import PowerLaw
                self.func_list.append(PowerLaw())
            elif profile_type == 'NIE':
                from lenstronomy.LightModel.Profiles.nie import NIE
                self.func_list.append(NIE())
            elif profile_type == 'CHAMELEON':
                from lenstronomy.LightModel.Profiles.chameleon import Chameleon
                self.func_list.append(Chameleon())
            elif profile_type == 'DOUBLE_CHAMELEON':
                from lenstronomy.LightModel.Profiles.chameleon import DoubleChameleon
                self.func_list.append(DoubleChameleon())
            elif profile_type == 'TRIPLE_CHAMELEON':
                from lenstronomy.LightModel.Profiles.chameleon import TripleChameleon
                self.func_list.append(TripleChameleon())
            elif profile_type == 'INTERPOL':
                from lenstronomy.LightModel.Profiles.interpolation import Interpol
                self.func_list.append(Interpol())
            elif profile_type == 'SLIT_STARLETS':
                from lenstronomy.LightModel.Profiles.starlets import SLIT_Starlets
                self.func_list.append(
                    SLIT_Starlets(fast_inverse=True, second_gen=False))
            elif profile_type == 'SLIT_STARLETS_GEN2':
                from lenstronomy.LightModel.Profiles.starlets import SLIT_Starlets
                self.func_list.append(SLIT_Starlets(second_gen=True))
            else:
                raise ValueError(
                    'No light model of type %s found! Supported are the following models: %s'
                    % (profile_type, _MODELS_SUPPORTED))
        self._num_func = len(self.func_list)
Esempio n. 5
0
class TestSersic(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        self.sersic = Sersic(smoothing=0.02)
        self.sersic_elliptic = SersicElliptic(smoothing=0.02)
        self.core_sersic = CoreSersic(smoothing=0.02)

    def test_sersic(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        center_x = 0
        center_y = 0
        values = self.sersic.function(x, y, I0_sersic, R_sersic, n_sersic,
                                      center_x, center_y)
        npt.assert_almost_equal(values[0], 0.12658651833626802, decimal=6)
        x = np.array([0])
        y = np.array([0])
        values = self.sersic.function(x, y, I0_sersic, R_sersic, n_sersic,
                                      center_x, center_y)
        npt.assert_almost_equal(values[0], 5.1482559148107292, decimal=2)

        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        values = self.sersic.function(x, y, I0_sersic, R_sersic, n_sersic,
                                      center_x, center_y)
        npt.assert_almost_equal(values[0], 0.12658651833626802, decimal=6)
        npt.assert_almost_equal(values[1], 0.026902273598180083, decimal=6)
        npt.assert_almost_equal(values[2], 0.0053957432862338055, decimal=6)

        value = self.sersic.function(1000, 0, I0_sersic, R_sersic, n_sersic,
                                     center_x, center_y)
        npt.assert_almost_equal(value, 0, decimal=8)

    def test_symmetry_r_sersic(self):
        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        I0_sersic = 1
        R_sersic1 = 1
        R_sersic2 = 0.1
        n_sersic = 1
        center_x = 0
        center_y = 0
        values1 = self.sersic.function(x * R_sersic1, y * R_sersic1, I0_sersic,
                                       R_sersic1, n_sersic, center_x, center_y)
        values2 = self.sersic.function(x * R_sersic2, y * R_sersic2, I0_sersic,
                                       R_sersic2, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values1[0], values2[0], decimal=6)
        npt.assert_almost_equal(values1[1], values2[1], decimal=6)
        npt.assert_almost_equal(values1[2], values2[2], decimal=6)

    def test_sersic_center(self):
        x = 0.01
        y = 0.
        I0_sersic = 1
        R_sersic = 0.1
        n_sersic = 4.
        center_x = 0
        center_y = 0
        values = self.sersic.function(x, y, I0_sersic, R_sersic, n_sersic,
                                      center_x, center_y)
        npt.assert_almost_equal(values, 12.688073819377406, decimal=6)

    def test_sersic_elliptic(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        phi_G = 1
        q = 0.9
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        center_x = 0
        center_y = 0
        values = self.sersic_elliptic.function(x, y, I0_sersic, R_sersic,
                                               n_sersic, e1, e2, center_x,
                                               center_y)
        npt.assert_almost_equal(values[0], 0.12595366113005077, decimal=6)
        x = np.array([0])
        y = np.array([0])
        values = self.sersic_elliptic.function(x, y, I0_sersic, R_sersic,
                                               n_sersic, e1, e2, center_x,
                                               center_y)
        npt.assert_almost_equal(values[0], 5.1482553482055664, decimal=2)

        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        values = self.sersic_elliptic.function(x, y, I0_sersic, R_sersic,
                                               n_sersic, e1, e2, center_x,
                                               center_y)
        npt.assert_almost_equal(values[0], 0.11308277793465012, decimal=6)
        npt.assert_almost_equal(values[1], 0.021188620675507107, decimal=6)
        npt.assert_almost_equal(values[2], 0.0037276744362724477, decimal=6)

    def test_core_sersic(self):
        x = np.array([1])
        y = np.array([2])
        I0 = 1
        Rb = 1
        Re = 2
        gamma = 3
        n = 1
        phi_G = 1
        q = 0.9
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        center_x = 0
        center_y = 0
        values = self.core_sersic.function(x, y, I0, Rb, Re, n, gamma, e1, e2,
                                           center_x, center_y)
        npt.assert_almost_equal(values[0], 0.84489101, decimal=8)
        x = np.array([0])
        y = np.array([0])
        values = self.core_sersic.function(x, y, I0, Rb, Re, n, gamma, e1, e2,
                                           center_x, center_y)
        npt.assert_almost_equal(values[0], 288406.09, decimal=0)

        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        values = self.core_sersic.function(x, y, I0, Rb, Re, n, gamma, e1, e2,
                                           center_x, center_y)
        npt.assert_almost_equal(values[0], 0.79749529635325933, decimal=6)
        npt.assert_almost_equal(values[1], 0.33653478121594838, decimal=6)
        npt.assert_almost_equal(values[2], 0.14050402887681532, decimal=6)

    def test_total_flux(self):
        r_eff = 0.2
        I_eff = 1.
        n_sersic = 4
        flux = self.sersic._total_flux(r_eff, I_eff, n_sersic)
        npt.assert_almost_equal(flux, 0.9065917451904356, decimal=5)
Esempio n. 6
0
 def setup(self):
     self.sersic = Sersic(smoothing=0.02)
     self.sersic_elliptic = SersicElliptic(smoothing=0.02)
     self.core_sersic = CoreSersic(smoothing=0.02)
Esempio n. 7
0
    def __init__(self,
                 light_model_list,
                 deflection_scaling_list=None,
                 source_redshift_list=None,
                 smoothing=0.0000001):
        """

        :param light_model_list: list of light models
        :param deflection_scaling_list: list of floats, rescales the original reduced deflection angles from the lens model
        to enable different models to be placed at different optical (redshift) distances. None means they are all
        :param source_redshift_list: list of redshifts of the model components
        :param smoothing: smoothing factor for certain models (deprecated)
        """
        self.profile_type_list = light_model_list
        self.deflection_scaling_list = deflection_scaling_list
        self.redshift_list = source_redshift_list
        self.func_list = []
        for profile_type in light_model_list:
            if profile_type == 'GAUSSIAN':
                from lenstronomy.LightModel.Profiles.gaussian import Gaussian
                self.func_list.append(Gaussian())
            elif profile_type == 'GAUSSIAN_ELLIPSE':
                from lenstronomy.LightModel.Profiles.gaussian import GaussianEllipse
                self.func_list.append(GaussianEllipse())
            elif profile_type == 'MULTI_GAUSSIAN':
                from lenstronomy.LightModel.Profiles.gaussian import MultiGaussian
                self.func_list.append(MultiGaussian())
            elif profile_type == 'MULTI_GAUSSIAN_ELLIPSE':
                from lenstronomy.LightModel.Profiles.gaussian import MultiGaussianEllipse
                self.func_list.append(MultiGaussianEllipse())
            elif profile_type == 'SERSIC':
                from lenstronomy.LightModel.Profiles.sersic import Sersic
                self.func_list.append(Sersic(smoothing=smoothing))
            elif profile_type == 'SERSIC_ELLIPSE':
                from lenstronomy.LightModel.Profiles.sersic import SersicElliptic
                self.func_list.append(SersicElliptic(smoothing=smoothing))
            elif profile_type == 'CORE_SERSIC':
                from lenstronomy.LightModel.Profiles.sersic import CoreSersic
                self.func_list.append(CoreSersic(smoothing=smoothing))
            elif profile_type == 'SHAPELETS':
                from lenstronomy.LightModel.Profiles.shapelets import ShapeletSet
                self.func_list.append(ShapeletSet())
            elif profile_type == 'HERNQUIST':
                from lenstronomy.LightModel.Profiles.hernquist import Hernquist
                self.func_list.append(Hernquist())
            elif profile_type == 'HERNQUIST_ELLIPSE':
                from lenstronomy.LightModel.Profiles.hernquist import HernquistEllipse
                self.func_list.append(HernquistEllipse())
            elif profile_type == 'PJAFFE':
                from lenstronomy.LightModel.Profiles.p_jaffe import PJaffe
                self.func_list.append(PJaffe())
            elif profile_type == 'PJAFFE_ELLIPSE':
                from lenstronomy.LightModel.Profiles.p_jaffe import PJaffe_Ellipse
                self.func_list.append(PJaffe_Ellipse())
            elif profile_type == 'UNIFORM':
                from lenstronomy.LightModel.Profiles.uniform import Uniform
                self.func_list.append(Uniform())
            elif profile_type == 'POWER_LAW':
                from lenstronomy.LightModel.Profiles.power_law import PowerLaw
                self.func_list.append(PowerLaw())
            elif profile_type == 'NIE':
                from lenstronomy.LightModel.Profiles.nie import NIE
                self.func_list.append(NIE())
            elif profile_type == 'CHAMELEON':
                from lenstronomy.LightModel.Profiles.chameleon import Chameleon
                self.func_list.append(Chameleon())
            elif profile_type == 'DOUBLE_CHAMELEON':
                from lenstronomy.LightModel.Profiles.chameleon import DoubleChameleon
                self.func_list.append(DoubleChameleon())
            elif profile_type == 'INTERPOL':
                from lenstronomy.LightModel.Profiles.interpolation import Interpol
                self.func_list.append(Interpol())
            else:
                raise ValueError('Warning! No light model of type',
                                 profile_type, ' found!')
Esempio n. 8
0
class TestSersic(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        self.sersic = Sersic(smoothing=0.02)
        self.sersic_elliptic = SersicElliptic(smoothing=0.02)
        self.core_sersic = CoreSersic(smoothing=0.02)

    def test_sersic(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        center_x = 0
        center_y = 0
        values = self.sersic.function(x, y, I0_sersic, R_sersic, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.12658651833626802, decimal=6)
        x = np.array([0])
        y = np.array([0])
        values = self.sersic.function( x, y, I0_sersic, R_sersic, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values[0],  5.1482559148107292, decimal=2)

        x = np.array([2,3,4])
        y = np.array([1,1,1])
        values = self.sersic.function( x, y, I0_sersic, R_sersic, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.12658651833626802, decimal=6)
        npt.assert_almost_equal(values[1], 0.026902273598180083, decimal=6)
        npt.assert_almost_equal(values[2], 0.0053957432862338055, decimal=6)

        value = self.sersic.function(1000, 0, I0_sersic, R_sersic, n_sersic, center_x, center_y)
        npt.assert_almost_equal(value, 0, decimal=8)

    def test_symmetry_r_sersic(self):
        x = np.array([2,3,4])
        y = np.array([1,1,1])
        I0_sersic = 1
        R_sersic1 = 1
        R_sersic2 = 0.1
        n_sersic = 1
        center_x = 0
        center_y = 0
        values1 = self.sersic.function(x*R_sersic1, y*R_sersic1, I0_sersic, R_sersic1, n_sersic, center_x, center_y)
        values2 = self.sersic.function(x*R_sersic2, y*R_sersic2, I0_sersic, R_sersic2, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values1[0], values2[0], decimal=6)
        npt.assert_almost_equal(values1[1], values2[1], decimal=6)
        npt.assert_almost_equal(values1[2], values2[2], decimal=6)

    def test_sersic_center(self):
        x = 0.01
        y = 0.
        I0_sersic = 1
        R_sersic = 0.1
        n_sersic = 4.
        center_x = 0
        center_y = 0
        values = self.sersic.function(x, y, I0_sersic, R_sersic, n_sersic, center_x, center_y)
        npt.assert_almost_equal(values, 12.688073819377406, decimal=6)

    def test_sersic_elliptic(self):
        x = np.array([1])
        y = np.array([2])
        I0_sersic = 1
        R_sersic = 1
        n_sersic = 1
        phi_G = 1
        q = 0.9
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        center_x = 0
        center_y = 0
        values = self.sersic_elliptic.function(x, y, I0_sersic, R_sersic, n_sersic, e1, e2, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.12595366113005077, decimal=6)
        x = np.array([0])
        y = np.array([0])
        values = self.sersic_elliptic.function(x, y, I0_sersic, R_sersic, n_sersic, e1, e2, center_x, center_y)
        npt.assert_almost_equal(values[0], 5.1482553482055664, decimal=2)

        x = np.array([2,3,4])
        y = np.array([1,1,1])
        values = self.sersic_elliptic.function(x, y, I0_sersic, R_sersic, n_sersic, e1, e2, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.11308277793465012, decimal=6)
        npt.assert_almost_equal(values[1], 0.021188620675507107, decimal=6)
        npt.assert_almost_equal(values[2], 0.0037276744362724477, decimal=6)

    def test_core_sersic(self):
        x = np.array([1])
        y = np.array([2])
        I0 = 1
        Rb = 1
        Re = 2
        gamma = 3
        n = 1
        phi_G = 1
        q = 0.9
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        center_x = 0
        center_y = 0
        values = self.core_sersic.function(x, y, I0, Rb, Re, n, gamma, e1, e2, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.10338957116342086, decimal=8)
        x = np.array([0])
        y = np.array([0])
        values = self.core_sersic.function(x, y, I0, Rb, Re, n, gamma, e1, e2, center_x, center_y)
        npt.assert_almost_equal(values[0], 187852.14004235074, decimal=0)

        x = np.array([2,3,4])
        y = np.array([1,1,1])
        values = self.core_sersic.function(x, y, I0, Rb, Re, n, gamma, e1, e2, center_x, center_y)
        npt.assert_almost_equal(values[0], 0.09255079955772508, decimal=6)
        npt.assert_almost_equal(values[1], 0.01767817014938002, decimal=6)
        npt.assert_almost_equal(values[2], 0.0032541063777438853, decimal=6)

    def test_total_flux(self):
        deltapix = 0.1
        x_grid, y_grid = util.make_grid(numPix=400, deltapix=deltapix)
        r_eff = 1
        I_eff = 1.
        n_sersic = 2
        flux_analytic = self.sersic.total_flux(amp=I_eff, R_sersic=r_eff, n_sersic=n_sersic, e1=0, e2=0)
        flux_grid = self.sersic.function(x_grid, y_grid, R_sersic=r_eff, n_sersic=n_sersic, amp=I_eff)
        flux_numeric = np.sum(flux_grid) * deltapix**2
        npt.assert_almost_equal(flux_numeric/flux_analytic, 1, decimal=2)

        # and here we check with ellipticity
        e1, e2 = 0.1, 0
        flux_analytic_ell = self.sersic.total_flux(amp=I_eff, R_sersic=r_eff, n_sersic=n_sersic, e1=e1, e2=e2)
        flux_grid = self.sersic_elliptic.function(x_grid, y_grid, R_sersic=r_eff, n_sersic=n_sersic, amp=I_eff, e1=e1, e2=e2)
        flux_numeric_ell = np.sum(flux_grid) * deltapix ** 2
        print(flux_analytic, flux_analytic_ell, flux_numeric_ell)
        npt.assert_almost_equal(flux_numeric_ell / flux_analytic_ell, 1, decimal=2)
Esempio n. 9
0
 def setup(self):
     self.sersic = Sersic(smoothing=0.02)
     self.sersic_elliptic = SersicElliptic(smoothing=0.02,
                                           sersic_major_axis=True)
     self.core_sersic = CoreSersic(smoothing=0.02, sersic_major_axis=True)