def train(epoch): print('\nEpoch: %d' % epoch) print("Train") net.train() train_loss = 0 correct_count = 0 total = 0 flag = 0 for batch_idx, (input1, target1, input2, target2) in enumerate(train_loader): input1, target1, input2, target2 = input1.to(device), target1.to( device), input2.to(device), target2.to(device) #inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() output1 = net(input1).float() output2 = net(input2).float() target1 = target1.float() target2 = target2.float() ## if output1 > output2 and target1 > target2: if epoch == 5: print(output1, output2, target1, target2) correct = True elif output2 > output1 and target2 > target1: if epoch == 5: print(output1, output2, target1, target2) correct = True elif output1 == output2 and target1 == target2: if epoch == 5: print(output1, output2, target1, target2) correct = True else: correct = False #(like count1, like count2] ## Have to write the criterion function if flag <= 5: print(flag, ":", output1, output2, target1, target2) flag += 1 loss = criterion(output1, output2, target1, target2) loss.backward() optimizer.step() train_loss += loss.item() # _, predicted = outputs.max(1) # total += targets.size(0) # correct += predicted.eq(targets).sum().item() # loss.data[0] total += 1 correct_count += 1 if correct else 0 # print(batch_idx, len(train_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' # % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) print("Total Loss: %.3f | Acc: %.3f" % (train_loss / (batch_idx + 1), 100. * correct_count / total)) lera.log('train_loss', train_loss / (batch_idx + 1)) lera.log('train_acc', 100. * correct_count / total)
def test(epoch): print("Validation") global best_acc net.eval() test_loss = 0 correct_count = 0 total = 0 with torch.no_grad(): for batch_idx, (input1, target1, input2, target2) in enumerate(val_loader): input1, target1, input2, target2 = input1.to(device), target1.to( device), input2.to(device), target2.to(device) output1 = net(input1).float() output2 = net(input2).float() target1 = target1.float() target2 = target2.float() loss = criterion(output1, output2, target1, target2) test_loss += loss.item() # _, predicted = outputs.max(1) # total += targets.size(0) # correct += predicted.eq(targets).sum().item() # print(batch_idx, len(val_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' # % (test_loss/(batch_idx+1), 100.*correct/total, correct, total)) if output1 > output2 and target1 > target2: correct = True elif output2 > output1 and target2 > target1: correct = True elif output1 == output2 and target1 == target2: correct = True else: correct = False total += 1 correct_count += 1 if correct else 0 print("Total Loss: %.3f | Acc: %.3f" % (test_loss / (batch_idx + 1), 100. * correct_count / total)) lera.log('val_loss', test_loss / (batch_idx + 1)) lera.log('val_acc', 100. * correct_count / total) # Save checkpoint. acc = 100. * correct_count / total if acc > best_acc: print('Saving..') state = { 'net': net.state_dict(), 'acc': acc, 'epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, './checkpoint/ckpt.pth') best_acc = acc
def train(config): lera.log_hyperparams({ "title": "hw1", "epoch": config.epochs, "lr": config.lr }) dataset = img_dataset("./dataset/train", "train") dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=config.bs, shuffle=True, drop_last=True) net = Classifier(num_classes=13).cuda() net.load_state_dict( torch.load( join(f"{config.weight_path}", f"{config.pre_epochs}_classifier.pth"))) criterion = nn.CrossEntropyLoss().cuda() optimizer = optim.Adam(net.parameters(), lr=config.lr) for epoch in range(config.epochs): for _, data in enumerate(dataloader, 0): optimizer.zero_grad() net.train() inputs, labels = data inputs = inputs.cuda() labels = labels.cuda() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() _, predicted = torch.max(outputs.data, 1) correct_counts = predicted.eq(labels.data.view_as(predicted)) train_acc = torch.sum(correct_counts).item() / predicted.size(0) lera.log({"loss": loss.item(), "acc": train_acc}) print("epoch:{}/{}, loss:{}, acc:{:02f}".format( epoch + 1 + config.pre_epochs, config.epochs + config.pre_epochs, loss.item(), train_acc, )) if (epoch + 1 + config.pre_epochs) % 10 == 0: torch.save( net.state_dict(), join( f"{config.weight_path}", f"{epoch + 1 + config.pre_epochs}_classifier.pth", ), )
def train(epoch): e = epoch model.train() if config.schedule: scheduler.step() print("Decaying learning rate to %g" % scheduler.get_lr()[0]) if config.is_dis: scheduler_dis.step() lera.log({ 'lr': scheduler.get_lr()[0], }) if opt.model == 'gated': model.current_epoch = epoch global e, updates, total_loss, start_time, report_total, total_loss_sgm, total_loss_ss if config.MLMSE: global Var train_data_gen = prepare_data('once', 'train') # for raw_src, src, src_len, raw_tgt, tgt, tgt_len in trainloader: while True: train_data = train_data_gen.next() if train_data == False: break #如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(train_data['mix_feas'])) # raw_tgt = [spk.keys() for spk in train_data['multi_spk_fea_list']] raw_tgt = [ sorted(spk.keys()) for spk in train_data['multi_spk_fea_list'] ] feas_tgt = models.rank_feas( raw_tgt, train_data['multi_spk_fea_list']) #这里是目标的图谱 # 要保证底下这几个都是longTensor(长整数) tgt = Variable( torch.from_numpy( np.array([[0] + [dict_spk2idx[spk] for spk in spks] + [dict_spk2idx['<EOS>']] for spks in raw_tgt], dtype=np.int))).transpose(0, 1) #转换成数字,然后前后加开始和结束符号。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor(config.batch_size).zero_() + len(train_data['multi_spk_fea_list'][0])).unsqueeze(0) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() model.zero_grad() # optim.optimizer.zero_grad() outputs, targets, multi_mask = model( src, src_len, tgt, tgt_len) #这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 print 'mask size:', multi_mask.size() if 1 and len(opt.gpus) > 1: sgm_loss, num_total, num_correct = model.module.compute_loss( outputs, targets, opt.memory) else: sgm_loss, num_total, num_correct = model.compute_loss( outputs, targets, opt.memory) print 'loss for SGM,this batch:', sgm_loss.data[0] / num_total src = src.transpose(0, 1) # expand the raw mixed-features to topk channel. siz = src.size() assert len(siz) == 3 topk = feas_tgt.size()[1] x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk, siz[1], siz[2]) multi_mask = multi_mask.transpose(0, 1) if 1 and len(opt.gpus) > 1: if config.MLMSE: Var = model.module.update_var(x_input_map_multi, multi_mask, feas_tgt) lera.log_image(u'Var weight', Var.data.cpu().numpy().reshape( config.speech_fre, config.speech_fre, 1).repeat(3, 2), clip=(-1, 1)) ss_loss = model.module.separation_loss(x_input_map_multi, multi_mask, feas_tgt, Var) else: ss_loss = model.module.separation_loss(x_input_map_multi, multi_mask, feas_tgt) else: ss_loss = model.separation_loss(x_input_map_multi, multi_mask, feas_tgt) loss = sgm_loss + ss_loss # dis_loss model if config.is_dis: dis_loss = models.loss.dis_loss(config, topk, model_dis, x_input_map_multi, multi_mask, feas_tgt, func_dis) loss = loss + dis_loss # print 'dis_para',model_dis.parameters().next()[0] # print 'ss_para',model.parameters().next()[0] loss.backward() # print 'totallllllllllll loss:',loss total_loss_sgm += sgm_loss.data[0] total_loss_ss += ss_loss.data[0] lera.log({ 'sgm_loss': sgm_loss.data[0], 'ss_loss': ss_loss.data[0], }) total_loss += loss.data[0] report_total += num_total optim.step() if config.is_dis: optim_dis.step() updates += 1 if updates % 30 == 0: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,sgm loss: %6.6f,ss loss: %6.6f\n" % (time.time() - start_time, epoch, updates, loss / num_total, total_loss_sgm / 30.0, total_loss_ss / 30.0)) total_loss_sgm, total_loss_ss = 0, 0 # continue if 0 or updates % config.eval_interval == 0 and epoch > 1: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n" % (time.time() - start_time, epoch, updates, total_loss / report_total)) print('evaluating after %d updates...\r' % updates) score = eval(epoch) for metric in config.metric: scores[metric].append(score[metric]) if metric == 'micro_f1' and score[metric] >= max( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') if metric == 'hamming_loss' and score[metric] <= min( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') model.train() total_loss = 0 start_time = 0 report_total = 0 if updates % config.save_interval == 1: save_model(log_path + 'checkpoint_v2_withdis{}.pt'.format(config.is_dis))
def eval(epoch): model.eval() reference, candidate, source, alignments = [], [], [], [] e = epoch test_or_valid = 'valid' print 'Test or valid:', test_or_valid eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) # for raw_src, src, src_len, raw_tgt, tgt, tgt_len in validloader: SDR_SUM = np.array([]) batch_idx = 0 global best_SDR, Var while True: # for ___ in range(2): print '-' * 30 eval_data = eval_data_gen.next() if eval_data == False: break #如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_feas'])) raw_tgt = [ sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list'] ] top_k = len(raw_tgt[0]) # 要保证底下这几个都是longTensor(长整数) # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。 tgt = Variable(torch.ones( top_k + 2, config.batch_size)) # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor(config.batch_size).zero_() + len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0) feas_tgt = models.rank_feas(raw_tgt, eval_data['multi_spk_fea_list']) #这里是目标的图谱 if config.WFM: tmp_size = feas_tgt.size() assert len(tmp_size) == 4 feas_tgt_sum = torch.sum(feas_tgt, dim=1, keepdim=True) feas_tgt_sum_square = (feas_tgt_sum * feas_tgt_sum).expand(tmp_size) feas_tgt_square = feas_tgt * feas_tgt WFM_mask = feas_tgt_square / feas_tgt_sum_square if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() if config.WFM: WFM_mask = WFM_mask.cuda() if config.buffer_size or config.buffer_shift: # first convet to realtime batches assert src.size()[1] == 1 left_padding = Variable( torch.zeros(config.buffer_size, src.size()[1], src.size()[-1]).cuda()) src = torch.cat((left_padding, src), dim=0) split_idx = 0 src_new = Variable( torch.zeros(config.buffer_size + config.buffer_shift, mix_speech_len / config.buffer_shift + 1, src.size()[-1]).cuda()) batch_counter = 0 while True: print 'split_idx at:', split_idx split_len = config.buffer_size + config.buffer_shift # the len of every split if split_idx + split_len > src.size( )[0]: # if pass the right length print 'Need to add right padding with len:', ( split_idx + split_len) - src.size()[0] right_padding = Variable( torch.zeros((split_idx + split_len) - src.size()[0], src.size()[1], src.size()[-1]).cuda()) src = torch.cat((src, right_padding), dim=0) src_split = src[split_idx:(split_idx + split_len)] src_new[:, batch_counter] = src_split break src_split = src[split_idx:(split_idx + split_len)] src_new[:, batch_counter] = src_split split_idx += config.buffer_shift batch_counter += 1 assert batch_counter + 1 == src_new.size()[1] src_len[0] = config.buffer_shift + config.buffer_size src_len = src_len.expand(1, src_new.size()[1]) try: if 1 and len(opt.gpus) > 1: # samples, alignment = model.module.sample(src, src_len) samples, alignment, hiddens, predicted_masks = model.module.beam_sample( src_new, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) else: samples, alignment, hiddens, predicted_masks = model.beam_sample( src_new, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) # samples, alignment, hiddens, predicted_masks = model.beam_sample(src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) except Exception, info: print '**************Error occurs here************:', info continue if config.top1: predicted_masks = torch.cat([predicted_masks, 1 - predicted_masks], 1) if config.buffer_size and config.buffer_shift: # then recover the whole maps # masks:[7,topk,buffer_size+buffer_shift,fre] masks_recover = Variable( torch.zeros(1, predicted_masks.size(1), mix_speech_len, speech_fre).cuda()) recover_idx = 0 for batch_counter in range(predicted_masks.size(0)): if not batch_counter == predicted_masks.size(0) - 1: masks_recover[:, :, recover_idx:recover_idx + config.buffer_shift] = predicted_masks[ batch_counter, :, -1 * config.buffer_shift:] else: # the last shift assert mix_speech_len - recover_idx == config.buffer_shift - right_padding.size( 0) masks_recover[:, :, recover_idx:] = predicted_masks[ batch_counter, :, -1 * config.buffer_shift:(-1 * right_padding.size(0))] recover_idx += config.buffer_shift predicted_masks = masks_recover src = Variable(torch.from_numpy(eval_data['mix_feas'])).transpose( 0, 1).cuda() # ''' # expand the raw mixed-features to topk channel. src = src.transpose(0, 1) siz = src.size() assert len(siz) == 3 topk = feas_tgt.size()[1] x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk, siz[1], siz[2]) if config.WFM: feas_tgt = x_input_map_multi.data * WFM_mask ''' if 1 and len(opt.gpus) > 1: ss_loss = model.module.separation_loss(x_input_map_multi, predicted_masks, feas_tgt,Var) else: ss_loss = model.separation_loss(x_input_map_multi, predicted_masks, feas_tgt,None) print 'loss for ss,this batch:',ss_loss.data[0] lera.log({ 'ss_loss_'+test_or_valid: ss_loss.data[0], }) del ss_loss,hiddens # ''' '' if batch_idx <= (500 / config.batch_size ): #only the former batches counts the SDR # x_input_map_multi=x_input_map_multi[:,:,:config.buffer_shift] predicted_maps = predicted_masks * x_input_map_multi # predicted_maps=Variable(feas_tgt) utils.bss_eval(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst='batch_outputwaddd') del predicted_maps, predicted_masks, x_input_map_multi SDR_SUM = np.append(SDR_SUM, bss_test.cal('batch_outputwaddd/')) print 'SDR_aver_now:', SDR_SUM.mean() lera.log({'SDR sample': SDR_SUM.mean()}) # raw_input('Press any key to continue......') elif batch_idx == (500 / config.batch_size) + 1 and SDR_SUM.mean( ) > best_SDR: #only record the best SDR once. print 'Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean()) best_SDR = SDR_SUM.mean() # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR)) # ''' candidate += [ convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>']) for s in samples ] # source += raw_src reference += raw_tgt print 'samples:', samples print 'can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:], reference[-1 * config.batch_size:]) alignments += [align for align in alignment] batch_idx += 1
def train(epoch): global e, updates, total_loss, start_time, report_total, report_correct, total_loss_sgm, total_loss_ss e = epoch model.train() SDR_SUM = np.array([]) SDRi_SUM = np.array([]) if updates <= config.warmup: #如果不在warm阶段就正常规划 pass elif config.schedule and scheduler.get_lr()[0] > 5e-7: scheduler.step() print(("Decaying learning rate to %g" % scheduler.get_lr()[0])) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) if opt.model == 'gated': model.current_epoch = epoch train_data_gen = prepare_data('once', 'train') while True: if updates <= config.warmup: # 如果在warm就开始warmup tmp_lr = config.learning_rate * min( max(updates, 1)**(-0.5), max(updates, 1) * (config.warmup**(-1.5))) for param_group in optim.optimizer.param_groups: param_group['lr'] = tmp_lr scheduler.base_lrs = list( [group['lr'] for group in optim.optimizer.param_groups]) if updates % 100 == 0: #记录一下 print(updates) print("Warmup learning rate to %g" % tmp_lr) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) train_data = next(train_data_gen) if train_data == False: print(('SDR_aver_epoch:', SDR_SUM.mean())) print(('SDRi_aver_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(train_data['mix_feas'])) # raw_tgt = [spk.keys() for spk in train_data['multi_spk_fea_list']] # raw_tgt = [sorted(spk.keys()) for spk in train_data['multi_spk_fea_list']] raw_tgt = train_data['batch_order'] feas_tgt = models.rank_feas( raw_tgt, train_data['multi_spk_fea_list']) # 这里是目标的图谱,aim_size,len,fre padded_mixture, mixture_lengths, padded_source = train_data['tas_zip'] padded_mixture = torch.from_numpy(padded_mixture).float() mixture_lengths = torch.from_numpy(mixture_lengths) padded_source = torch.from_numpy(padded_source).float() padded_mixture = padded_mixture.cuda().transpose(0, 1) mixture_lengths = mixture_lengths.cuda() padded_source = padded_source.cuda() topk_this_batch = int(len(raw_tgt[0])) # 要保证底下这几个都是longTensor(长整数) tgt_max_len = topk_this_batch + 2 # with bos and eos. tgt = Variable( torch.from_numpy( np.array( [[0] + [dict_spk2idx[spk] for spk in spks] + (tgt_max_len - len(spks) - 1) * [dict_spk2idx['<EOS>']] for spks in raw_tgt], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 # tgt = Variable(torch.from_numpy(np.array([[0,1,2,102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in train_data['multi_spk_fea_list'] ])).unsqueeze(0) if config.WFM: siz = src.size() # bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = topk_this_batch # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous().view(-1, siz[1], siz[2]) # bs,topk,T,F feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2]) feas_tgt_square = feas_tgt_tmp * feas_tgt_tmp feas_tgt_sum_square = torch.sum(feas_tgt_square, dim=1, keepdim=True).expand( siz[0], topk_max, siz[1], siz[2]) WFM_mask = feas_tgt_square / (feas_tgt_sum_square + 1e-15) feas_tgt = x_input_map_multi.view( siz[0], -1, siz[1], siz[2]).data * WFM_mask # bs,topk,T,F feas_tgt = feas_tgt.view(-1, siz[1], siz[2]) # bs*topk,T,F WFM_mask = WFM_mask.cuda() del x_input_map_multi elif config.PSM: siz = src.size() # bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = topk_this_batch # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous() # bs,topk,T,F feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2]) IRM = feas_tgt_tmp / (x_input_map_multi + 1e-15) angle_tgt = models.rank_feas( raw_tgt, train_data['multi_spk_angle_list']).view( siz[0], -1, siz[1], siz[2]) angle_mix = Variable( torch.from_numpy(np.array( train_data['mix_angle']))).unsqueeze(1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous() ang = np.cos(angle_mix - angle_tgt) ang = np.clip(ang, 0, None) feas_tgt = x_input_map_multi * IRM * ang # bs,topk,T,F feas_tgt = feas_tgt.view(-1, siz[1], siz[2]) # bs*topk,T,F del x_input_map_multi elif config.frame_mask: siz = src.size() # bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = topk_this_batch # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous() # bs,topk,T,F feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2]) feas_tgt_time = torch.sum(feas_tgt_tmp, 3).transpose(1, 2) #bs,T,topk for v1 in feas_tgt_time: for v2 in v1: if v2[0] > v2[1]: v2[0] = 1 v2[1] = 0 else: v2[0] = 0 v2[1] = 1 frame_mask = feas_tgt_time.transpose(1, 2).unsqueeze(-1) #bs,topk,t,1 feas_tgt = x_input_map_multi * frame_mask feas_tgt = feas_tgt.view(-1, siz[1], siz[2]) # bs*topk,T,F if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() model.zero_grad() # aim_list 就是找到有正经说话人的地方的标号 aim_list = (tgt[1:-1].transpose(0, 1).contiguous().view(-1) != dict_spk2idx['<EOS>']).nonzero().squeeze() aim_list = aim_list.data.cpu().numpy() outputs, pred, targets, multi_mask, dec_enc_attn_list = model( src, src_len, tgt, tgt_len, dict_spk2idx, None, mix_wav=padded_mixture ) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 print('mask size:', multi_mask.size()) # writer.add_histogram('global gamma',gamma, updates) src = src.transpose(0, 1) # expand the raw mixed-features to topk_max channel. siz = src.size() assert len(siz) == 3 topk_max = topk_this_batch # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous() #.view(-1, siz[1], siz[2]) # x_input_map_multi = x_input_map_multi[aim_list] multi_mask = multi_mask.transpose(0, 1) # if config.WFM: # feas_tgt = x_input_map_multi.data * WFM_mask if 1 and len(opt.gpus) > 1: sgm_loss, num_total, num_correct = model.module.compute_loss( outputs, targets, opt.memory) else: sgm_loss, num_total, num_correct = model.compute_loss( outputs, targets, opt.memory) print(('loss for SGM,this batch:', sgm_loss.cpu().item())) writer.add_scalars('scalar/loss', {'sgm_loss': sgm_loss.cpu().item()}, updates) loss = sgm_loss ss_loss = 0 loss.backward() # print 'totallllllllllll loss:',loss total_loss_sgm += sgm_loss.cpu().item() lera.log({ 'sgm_loss': sgm_loss.cpu().item(), 'loss:': loss.cpu().item(), }) total_loss += loss.cpu().item() report_correct += num_correct.cpu().item() report_total += num_total.cpu().item() optim.step() updates += 1 if updates % 30 == 0: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,sgm loss: %6.6f,ss loss: %6.6f,label acc: %6.6f\n" % (time.time() - start_time, epoch, updates, loss / num_total, total_loss_sgm / 30.0, total_loss_ss / 30.0, report_correct / report_total)) lera.log({'label_acc': report_correct / report_total}) writer.add_scalars('scalar/loss', {'label_acc': report_correct / report_total}, updates) total_loss_sgm, total_loss_ss = 0, 0 # continue if 0 and updates % config.eval_interval == 0 and epoch > 3: #建议至少跑几个epoch再进行测试,否则模型还没学到东西,会有很多问题。 logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n" % (time.time() - start_time, epoch, updates, total_loss / report_total)) print(('evaluating after %d updates...\r' % updates)) original_bs = config.batch_size score = eval(epoch) # eval的时候batch_size会变成1 # print 'Orignal bs:',original_bs config.batch_size = original_bs # print 'Now bs:',config.batch_size for metric in config.metric: scores[metric].append(score[metric]) lera.log({ 'sgm_micro_f1': score[metric], }) if metric == 'micro_f1' and score[metric] >= max( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') if metric == 'hamming_loss' and score[metric] <= min( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') model.train() total_loss = 0 start_time = 0 report_total = 0 report_correct = 0 if updates > 10 and updates % config.save_interval == 1: save_model(log_path + 'TDAAv3_PIT_{}.pt'.format(updates))
def train(epoch): e = epoch model.train() SDR_SUM = np.array([]) SDRi_SUM = np.array([]) if config.schedule and scheduler.get_lr()[0] > 5e-5: scheduler.step() print("Decaying learning rate to %g" % scheduler.get_lr()[0]) lera.log({ 'lr': scheduler.get_lr()[0], }) if opt.model == 'gated': model.current_epoch = epoch global e, updates, total_loss, start_time, report_total, report_correct, total_loss_sgm, total_loss_ss train_data_gen = prepare_data('once', 'train') while True: print '\n' train_data = train_data_gen.next() if train_data == False: print('SDR_aver_epoch:', SDR_SUM.mean()) print('SDRi_aver_epoch:', SDRi_SUM.mean()) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(train_data['mix_feas'])) # raw_tgt = [spk.keys() for spk in train_data['multi_spk_fea_list']] raw_tgt = [ sorted(spk.keys()) for spk in train_data['multi_spk_fea_list'] ] feas_tgt = models.rank_feas( raw_tgt, train_data['multi_spk_fea_list']) # 这里是目标的图谱,aim_size,len,fre # 要保证底下这几个都是longTensor(长整数) tgt_max_len = config.MAX_MIX + 2 # with bos and eos. tgt = Variable( torch.from_numpy( np.array( [[0] + [dict_spk2idx[spk] for spk in spks] + (tgt_max_len - len(spks) - 1) * [dict_spk2idx['<EOS>']] for spks in raw_tgt], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in train_data['multi_spk_fea_list'] ])).unsqueeze(0) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() model.zero_grad() # aim_list 就是找到有正经说话人的地方的标号 aim_list = (tgt[1:-1].transpose(0, 1).contiguous().view(-1) != dict_spk2idx['<EOS>']).nonzero().squeeze() aim_list = aim_list.data.cpu().numpy() outputs, targets, multi_mask, gamma = model( src, src_len, tgt, tgt_len, dict_spk2idx) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 # print('mask size:', multi_mask.size()) writer.add_histogram('global gamma', gamma, updates) if 1 and len(opt.gpus) > 1: sgm_loss, num_total, num_correct = model.module.compute_loss( outputs, targets, opt.memory) else: sgm_loss, num_total, num_correct = model.compute_loss( outputs, targets, opt.memory) print('loss for SGM,this batch:', sgm_loss.cpu().item()) writer.add_scalars('scalar/loss', {'sgm_loss': sgm_loss.cpu().item()}, updates) src = src.transpose(0, 1) # expand the raw mixed-features to topk_max channel. siz = src.size() assert len(siz) == 3 topk_max = config.MAX_MIX # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous().view(-1, siz[1], siz[2]) x_input_map_multi = x_input_map_multi[aim_list] multi_mask = multi_mask.transpose(0, 1) if 1 and len(opt.gpus) > 1: ss_loss = model.module.separation_loss(x_input_map_multi, multi_mask, feas_tgt) else: ss_loss = model.separation_loss(x_input_map_multi, multi_mask, feas_tgt) print('loss for SS,this batch:', ss_loss.cpu().item()) writer.add_scalars('scalar/loss', {'ss_loss': ss_loss.cpu().item()}, updates) loss = sgm_loss + 5 * ss_loss loss.backward() # print 'totallllllllllll loss:',loss total_loss_sgm += sgm_loss.cpu().item() total_loss_ss += ss_loss.cpu().item() lera.log({ 'sgm_loss': sgm_loss.cpu().item(), 'ss_loss': ss_loss.cpu().item(), 'loss:': loss.cpu().item(), }) if updates > 10 and updates % config.eval_interval in [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]: predicted_maps = multi_mask * x_input_map_multi # predicted_maps=Variable(feas_tgt) utils.bss_eval(config, predicted_maps, train_data['multi_spk_fea_list'], raw_tgt, train_data, dst='batch_output') del predicted_maps, multi_mask, x_input_map_multi sdr_aver_batch, sdri_aver_batch = bss_test.cal('batch_output/') lera.log({'SDR sample': sdr_aver_batch}) lera.log({'SDRi sample': sdri_aver_batch}) writer.add_scalars('scalar/loss', { 'SDR_sample': sdr_aver_batch, 'SDRi_sample': sdri_aver_batch }, updates) SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch) print('SDR_aver_now:', SDR_SUM.mean()) print('SDRi_aver_now:', SDRi_SUM.mean()) total_loss += loss.cpu().item() report_correct += num_correct.cpu().item() report_total += num_total.cpu().item() optim.step() updates += 1 if updates % 30 == 0: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,sgm loss: %6.6f,ss loss: %6.6f,label acc: %6.6f\n" % (time.time() - start_time, epoch, updates, loss / num_total, total_loss_sgm / 30.0, total_loss_ss / 30.0, report_correct / report_total)) lera.log({'label_acc': report_correct / report_total}) writer.add_scalars('scalar/loss', {'label_acc': report_correct / report_total}, updates) total_loss_sgm, total_loss_ss = 0, 0 # continue if 0 and updates % config.eval_interval == 0 and epoch > 3: #建议至少跑几个epoch再进行测试,否则模型还没学到东西,会有很多问题。 logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n" % (time.time() - start_time, epoch, updates, total_loss / report_total)) print('evaluating after %d updates...\r' % updates) original_bs = config.batch_size score = eval(epoch) # eval的时候batch_size会变成1 print 'Orignal bs:', original_bs config.batch_size = original_bs print 'Now bs:', config.batch_size for metric in config.metric: scores[metric].append(score[metric]) lera.log({ 'sgm_micro_f1': score[metric], }) if metric == 'micro_f1' and score[metric] >= max( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') if metric == 'hamming_loss' and score[metric] <= min( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') model.train() total_loss = 0 start_time = 0 report_total = 0 report_correct = 0 if updates % config.save_interval == 1: save_model(log_path + 'TDAAv3_{}.pt'.format(updates))
def eval_recu(epoch): assert config.batch_size == 1 model.eval() reference, candidate, source, alignments = [], [], [], [] e = epoch test_or_valid = 'test' test_or_valid = 'valid' # test_or_valid = 'train' print(('Test or valid:', test_or_valid)) eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) SDR_SUM = np.array([]) SDRi_SUM = np.array([]) batch_idx = 0 global best_SDR, Var while True: print(('-' * 30)) eval_data = next(eval_data_gen) if eval_data == False: print(('SDR_aver_eval_epoch:', SDR_SUM.mean())) print(('SDRi_aver_eval_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_feas'])) # raw_tgt = [sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']] raw_tgt = eval_data['batch_order'] feas_tgt = models.rank_feas( raw_tgt, eval_data['multi_spk_fea_list']) # 这里是目标的图谱 src_original = src.transpose(0, 1) #To T,bs,F predict_multi_mask_all = None samples_list = [] for len_idx in range(config.MIN_MIX + 2, 2, -1): #逐个分离 tgt_max_len = len_idx # 4,3,2 with bos and eos. topk_k = len_idx - 2 tgt = Variable(torch.ones( len_idx, config.batch_size)) # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ tgt_max_len - 2 for one_spk in eval_data['multi_spk_fea_list'] ])).unsqueeze(0) if use_cuda: src = src.cuda().transpose(0, 1) # to T,bs,fre src_original = src_original.cuda() # TO T,bs,fre tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() # try: if len(opt.gpus) > 1: samples, alignment, hiddens, predicted_masks = model.module.beam_sample( src, src_len, dict_spk2idx, tgt, config.beam_size, src_original) else: samples, predicted_masks = model.beam_sample( src, src_len, dict_spk2idx, tgt, config.beam_size, src_original) # except: # continue # ''' # expand the raw mixed-features to topk_max channel. src = src_original.transpose(0, 1) #确保分离的时候用的是原始的语音 siz = src.size() assert len(siz) == 3 topk_max = topk_k x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk_max, siz[1], siz[2]) if 0 and config.WFM: feas_tgt = x_input_map_multi.data * WFM_mask if len_idx == 4: aim_feas = list(range(0, 2 * config.batch_size, 2)) #每个samples的第一个说话人取出来 predict_multi_mask_all = predicted_masks #bs*topk,T,F src = src * (1 - predicted_masks[aim_feas] ) #调整到bs为第一维,# bs,T,F samples_list = samples elif len_idx == 3: aim_feas = list(range(1, 2 * config.batch_size, 2)) #每个samples的第二个说话人取出来 predict_multi_mask_all[aim_feas] = predicted_masks feas_tgt = feas_tgt[aim_feas] samples_list = [samples_list[:1] + samples] if test_or_valid != 'test': if 1 and len(opt.gpus) > 1: ss_loss = model.module.separation_loss( x_input_map_multi, predicted_masks, feas_tgt, ) else: ss_loss = model.separation_loss(x_input_map_multi, predicted_masks, feas_tgt) print(('loss for ss,this batch:', ss_loss.cpu().item())) lera.log({ 'ss_loss_' + str(len_idx) + test_or_valid: ss_loss.cpu().item(), }) del ss_loss predicted_masks = predict_multi_mask_all if batch_idx <= (500 / config.batch_size ): # only the former batches counts the SDR predicted_maps = predicted_masks * x_input_map_multi # predicted_maps=Variable(feas_tgt) utils.bss_eval2(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst='batch_output_test') del predicted_maps, predicted_masks, x_input_map_multi try: sdr_aver_batch, sdri_aver_batch = bss_test.cal( 'batch_output_test/') SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch) except (AssertionError): print('Errors in calculating the SDR') print(('SDR_aver_now:', SDR_SUM.mean())) print(('SDRi_aver_now:', SDRi_SUM.mean())) lera.log({'SDR sample' + test_or_valid: SDR_SUM.mean()}) lera.log({'SDRi sample' + test_or_valid: SDRi_SUM.mean()}) writer.add_scalars('scalar/loss', {'SDR_sample_' + test_or_valid: sdr_aver_batch}, updates) # raw_input('Press any key to continue......') # ''' candidate += [ convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>']) for s in samples_list ] # source += raw_src reference += raw_tgt print(('samples:', samples)) print(('can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:], reference[-1 * config.batch_size:]))) # alignments += [align for align in alignment] batch_idx += 1 input('wait to continue......') result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path) print(( 'hamming_loss: %.8f | micro_f1: %.4f |recall: %.4f | precision: %.4f' % ( result['hamming_loss'], result['micro_f1'], result['micro_recall'], result['micro_precision'], ))) score = {} result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path) logging_csv([e, updates, result['hamming_loss'], \ result['micro_f1'], result['micro_precision'], result['micro_recall'],SDR_SUM.mean()]) print(('hamming_loss: %.8f | micro_f1: %.4f' % (result['hamming_loss'], result['micro_f1']))) score['hamming_loss'] = result['hamming_loss'] score['micro_f1'] = result['micro_f1'] 1 / 0 return score
def train(epoch, step): #lera.log('epoch', epoch) epoch += 1 for input, _ in DataLoader(datasets[dataset], batch_size=batch_size, pin_memory=use_cuda, num_workers=2, shuffle=True, drop_last=True): if use_cuda: input = input.cuda() step += 1 ze = enc(V(input)) index = min_dist(V(ze.data), embeddings) sz = index.size() zq = (embeddings[index.view(-1)] # [batch_size * x * x, D] containing vectors from embeddings .view(sz[0], sz[1], sz[2], D) # [batch_size, x, x, D] .permute(0, 3, 1, 2)) # [batch_size, D, x, x] emb_loss = (zq - V(ze.data)).pow(2).sum(1).mean() + 1e-2 * embeddings.pow(2).mean() # detach zq so it won't backprop to embeddings with recon loss zq = V(zq.data, requires_grad=True) output = dec(zq) commit_loss = beta * (ze - V(zq.data)).pow(2).sum(1).mean() recon_loss = F.mse_loss(output, V(input)) optimizer.zero_grad() commit_loss.backward(retain_graph=True) emb_loss.backward() recon_loss.backward() # pass data term gradient from decoder to encoder ze.backward(zq.grad) optimizer.step() emb_count[index.data.view(-1)] = 1 emb_count.sub_(0.01).clamp_(min=0) unique_embeddings = emb_count.gt(0).sum() sensitivity.add_(emb_loss.data[0] * (K - unique_embeddings) / K) sensitivity[emb_count.gt(0)] = 0 lera.log({ 'recon_loss': recon_loss.data[0], 'commit_loss': commit_loss.data[0], 'unique_embeddings': emb_count.gt(0).sum(), }, console=True) # make comparison image if lera.every(seconds=60): input = input.cpu()[0:8,:,:,:] w = input.size(-1) output = output.data.cpu()[0:8,:,:,:] result = (torch.stack([input, output]) # [2, 8, 3, w, w] .transpose(0, 1).contiguous() # [8, 2, 3, w, w] .view(4, 4, 3, w, w) # [4, 4, 3, w, w] .permute(0, 3, 1, 4, 2).contiguous() # [4, w, 4, w, 3] .view(w * 4, w * 4, 3)) # [w * 4, w * 4, 3] lera.log_image('reconstruction', result.numpy(), clip=(0, 1)) # continue training if step < total_steps: train(epoch, step)
def eval(epoch): # config.batch_size=1 model.eval() # print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1' reference, candidate, source, alignments = [], [], [], [] e = epoch test_or_valid = 'test' test_or_valid = 'valid' # test_or_valid = 'train' print(('Test or valid:', test_or_valid)) eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) SDR_SUM = np.array([]) SDRi_SUM = np.array([]) batch_idx = 0 global best_SDR, Var # for iii in range(2000): while True: print(('-' * 30)) eval_data = next(eval_data_gen) if eval_data == False: print(('SDR_aver_eval_epoch:', SDR_SUM.mean())) print(('SDRi_aver_eval_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_feas'])) # raw_tgt = [sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']] raw_tgt = eval_data['batch_order'] feas_tgt = models.rank_feas( raw_tgt, eval_data['multi_spk_fea_list']) # 这里是目标的图谱 top_k = len(raw_tgt[0]) # 要保证底下这几个都是longTensor(长整数) # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。 tgt = Variable(torch.ones( top_k + 2, config.batch_size)) # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in eval_data['multi_spk_fea_list'] ])).unsqueeze(0) # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0) if config.WFM: tmp_size = feas_tgt.size() assert len(tmp_size) == 3 feas_tgt_square = feas_tgt * feas_tgt feas_tgt_sum_square = torch.sum(feas_tgt_square, dim=0, keepdim=True).expand(tmp_size) WFM_mask = feas_tgt_square / (feas_tgt_sum_square + 1e-15) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() if config.WFM: WFM_mask = WFM_mask.cuda() # try: if 1 and len(opt.gpus) > 1: samples, alignment, hiddens, predicted_masks = model.module.beam_sample( src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) else: samples, predicted_masks = model.beam_sample( src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) samples = [samples] # except: # continue # ''' # expand the raw mixed-features to topk_max channel. src = src.transpose(0, 1) siz = src.size() assert len(siz) == 3 # if samples[0][-1] != dict_spk2idx['<EOS>']: # print '*'*40+'\nThe model is far from good. End the evaluation.\n'+'*'*40 # break topk_max = len(samples[0]) - 1 x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]) if 1 and config.WFM: feas_tgt = x_input_map_multi.data * WFM_mask if test_or_valid != 'test': if 1 and len(opt.gpus) > 1: ss_loss = model.module.separation_loss( x_input_map_multi, predicted_masks, feas_tgt, ) else: ss_loss = model.separation_loss(x_input_map_multi, predicted_masks, feas_tgt) print(('loss for ss,this batch:', ss_loss.cpu().item())) lera.log({ 'ss_loss_' + test_or_valid: ss_loss.cpu().item(), }) del ss_loss # ''''' if 1 and batch_idx <= (500 / config.batch_size ): # only the former batches counts the SDR predicted_maps = predicted_masks * x_input_map_multi # predicted_maps=Variable(feas_tgt) utils.bss_eval2(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst='batch_output_test') del predicted_maps, predicted_masks, x_input_map_multi try: sdr_aver_batch, sdri_aver_batch = bss_test.cal( 'batch_output_test/') SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch) except (AssertionError): print('Errors in calculating the SDR') print(('SDR_aver_now:', SDR_SUM.mean())) print(('SDRi_aver_now:', SDRi_SUM.mean())) lera.log({'SDR sample' + test_or_valid: SDR_SUM.mean()}) lera.log({'SDRi sample' + test_or_valid: SDRi_SUM.mean()}) writer.add_scalars('scalar/loss', {'SDR_sample_' + test_or_valid: sdr_aver_batch}, updates) # raw_input('Press any key to continue......') elif batch_idx == (200 / config.batch_size) + 1 and SDR_SUM.mean( ) > best_SDR: # only record the best SDR once. print(('Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean()))) best_SDR = SDR_SUM.mean() # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR)) # ''' candidate += [ convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>']) for s in samples ] # source += raw_src reference += raw_tgt print(('samples:', samples)) print(('can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:], reference[-1 * config.batch_size:]))) # alignments += [align for align in alignment] batch_idx += 1 result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path) print(( 'hamming_loss: %.8f | micro_f1: %.4f |recall: %.4f | precision: %.4f' % ( result['hamming_loss'], result['micro_f1'], result['micro_recall'], result['micro_precision'], ))) score = {} result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path) logging_csv([e, updates, result['hamming_loss'], \ result['micro_f1'], result['micro_precision'], result['micro_recall'],SDR_SUM.mean()]) print(('hamming_loss: %.8f | micro_f1: %.4f' % (result['hamming_loss'], result['micro_f1']))) score['hamming_loss'] = result['hamming_loss'] score['micro_f1'] = result['micro_f1'] 1 / 0 return score
def train_recu(epoch): global e, updates, total_loss, start_time, report_total, report_correct, total_loss_sgm, total_loss_ss e = epoch model.train() SDR_SUM = np.array([]) SDRi_SUM = np.array([]) if updates <= config.warmup: #如果不在warm阶段就正常规划 pass elif config.schedule and scheduler.get_lr()[0] > 5e-7: scheduler.step() print(("Decaying learning rate to %g" % scheduler.get_lr()[0])) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) if opt.model == 'gated': model.current_epoch = epoch train_data_gen = prepare_data('once', 'train') while True: if updates <= config.warmup: # 如果在warm就开始warmup tmp_lr = config.learning_rate * min( max(updates, 1)**(-0.5), max(updates, 1) * (config.warmup**(-1.5))) for param_group in optim.optimizer.param_groups: param_group['lr'] = tmp_lr scheduler.base_lrs = list( [group['lr'] for group in optim.optimizer.param_groups]) if updates % 100 == 0: #记录一下 print(updates) print("Warmup learning rate to %g" % tmp_lr) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) train_data = next(train_data_gen) if train_data == False: print(('SDR_aver_epoch:', SDR_SUM.mean())) print(('SDRi_aver_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(train_data['mix_feas'])) # raw_tgt = [spk.keys() for spk in train_data['multi_spk_fea_list']] # raw_tgt = [sorted(spk.keys()) for spk in train_data['multi_spk_fea_list']] raw_tgt = train_data['batch_order'] feas_tgt = models.rank_feas( raw_tgt, train_data['multi_spk_fea_list']) # 这里是目标的图谱,aim_size,len,fre if 0 and config.WFM: tmp_size = feas_tgt.size() assert len(tmp_size) == 3 feas_tgt_square = feas_tgt * feas_tgt feas_tgt_sum_square = torch.sum(feas_tgt_square, dim=0, keepdim=True).expand(tmp_size) WFM_mask = feas_tgt_square / (feas_tgt_sum_square + 1e-15) WFM_mask = WFM_mask.cuda() feas_tgt = x_input_map_multi.data * WFM_mask # 要保证底下这几个都是longTensor(长整数) src_original = src.transpose(0, 1) #To T,bs,F multi_mask_all = None for len_idx in range(config.MIN_MIX + 2, 2, -1): #逐个分离 # len_idx=3 tgt_max_len = len_idx # 4,3,2 with bos and eos. tgt = Variable( torch.from_numpy( np.array([[0] + [ dict_spk2idx[spk] for spk in spks[-1 * (tgt_max_len - 2):] ] + 1 * [dict_spk2idx['<EOS>']] for spks in raw_tgt], dtype=np.int))).transpose( 0, 1) # 转换成数字,然后前后加开始和结束符号。4,bs src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ tgt_max_len - 2 for one_spk in train_data['multi_spk_fea_list'] ])).unsqueeze(0) if use_cuda: src = src.cuda().transpose(0, 1) # to T,bs,fre src_original = src_original.cuda() # TO T,bs,fre tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() model.zero_grad() outputs, targets, multi_mask, gamma = model( src, src_len, tgt, tgt_len, dict_spk2idx, src_original) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 print('mask size:', multi_mask.size()) # writer.add_histogram('global gamma',gamma, updates) if 1 and len(opt.gpus) > 1: sgm_loss, num_total, num_correct = model.module.compute_loss( outputs, targets, opt.memory) else: sgm_loss, num_total, num_correct = model.compute_loss( outputs, targets, opt.memory) print(('loss for SGM,this batch:', sgm_loss.cpu().item())) writer.add_scalars( 'scalar/loss', {'sgm_loss' + str(len_idx): sgm_loss.cpu().item()}, updates) src = src_original.transpose(0, 1) #确保分离的时候用的是原始的语音 # expand the raw mixed-features to topk_max channel. siz = src.size() #bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = len_idx - 2 # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous().view(-1, siz[1], siz[2]) #bs,topk,T,F # x_input_map_multi = x_input_map_multi[aim_list] multi_mask = multi_mask.transpose(0, 1) if len_idx == 4: aim_feas = list(range(0, 2 * config.batch_size, 2)) #每个samples的第一个说话人取出来 multi_mask_all = multi_mask #bs*topk,T,F src = src * (1 - multi_mask[aim_feas]) #调整到bs为第一维,# bs,T,F # src=src.transpose(0,1)*(1-multi_mask[aim_feas]) #调整到bs为第一维 src = src.detach() #第二轮用第一轮预测出来的剩下的谱 elif len_idx == 3: aim_feas = list(range(1, 2 * config.batch_size, 2)) #每个samples的第二个说话人取出来 multi_mask_all[aim_feas] = multi_mask feas_tgt = feas_tgt[aim_feas] if 1 and len(opt.gpus) > 1: ss_loss = model.module.separation_loss(x_input_map_multi, multi_mask, feas_tgt) else: ss_loss = model.separation_loss(x_input_map_multi, multi_mask, feas_tgt) print(('loss for SS,this batch:', ss_loss.cpu().item())) writer.add_scalars( 'scalar/loss', {'ss_loss' + str(len_idx): ss_loss.cpu().item()}, updates) loss = sgm_loss + 5 * ss_loss loss.backward() optim.step() lera.log({ 'sgm_loss' + str(len_idx): sgm_loss.cpu().item(), 'ss_loss' + str(len_idx): ss_loss.cpu().item(), 'loss:' + str(len_idx): loss.cpu().item(), }) total_loss_sgm += sgm_loss.cpu().item() total_loss_ss += ss_loss.cpu().item() multi_mask = multi_mask_all x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], 2, siz[1], siz[2]).contiguous().view(-1, siz[1], siz[2]) if updates > 10 and updates % config.eval_interval in [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]: predicted_maps = multi_mask * x_input_map_multi # predicted_maps=Variable(feas_tgt) utils.bss_eval(config, predicted_maps, train_data['multi_spk_fea_list'], raw_tgt, train_data, dst='batch_output') del predicted_maps, multi_mask, x_input_map_multi sdr_aver_batch, sdri_aver_batch = bss_test.cal('batch_output/') lera.log({'SDR sample': sdr_aver_batch}) lera.log({'SDRi sample': sdri_aver_batch}) writer.add_scalars('scalar/loss', { 'SDR_sample': sdr_aver_batch, 'SDRi_sample': sdri_aver_batch }, updates) SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch) print(('SDR_aver_now:', SDR_SUM.mean())) print(('SDRi_aver_now:', SDRi_SUM.mean())) total_loss += loss.cpu().item() report_correct += num_correct.cpu().item() report_total += num_total.cpu().item() updates += 1 if updates % 30 == 0: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,sgm loss: %6.6f,ss loss: %6.6f,label acc: %6.6f\n" % (time.time() - start_time, epoch, updates, loss / num_total, total_loss_sgm / 30.0, total_loss_ss / 30.0, report_correct / report_total)) lera.log({'label_acc': report_correct / report_total}) writer.add_scalars('scalar/loss', {'label_acc': report_correct / report_total}, updates) total_loss_sgm, total_loss_ss = 0, 0 # continue if 0 and updates % config.eval_interval == 0 and epoch > 3: #建议至少跑几个epoch再进行测试,否则模型还没学到东西,会有很多问题。 logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n" % (time.time() - start_time, epoch, updates, total_loss / report_total)) print(('evaluating after %d updates...\r' % updates)) original_bs = config.batch_size score = eval(epoch) # eval的时候batch_size会变成1 # print 'Orignal bs:',original_bs config.batch_size = original_bs # print 'Now bs:',config.batch_size for metric in config.metric: scores[metric].append(score[metric]) lera.log({ 'sgm_micro_f1': score[metric], }) if metric == 'micro_f1' and score[metric] >= max( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') if metric == 'hamming_loss' and score[metric] <= min( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') model.train() total_loss = 0 start_time = 0 report_total = 0 report_correct = 0 if 1 and updates % config.save_interval == 1: save_model(log_path + 'TDAAv3_{}.pt'.format(updates))
def eval(epoch,test_or_valid='valid'): # config.batch_size=1 global updates,model model.eval() # print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1' reference, candidate, source, alignments = [], [], [], [] e = epoch print(('Test or valid:', test_or_valid)) eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) SDR_SUM = np.array([]) SDRi_SUM = np.array([]) batch_idx = 0 global best_SDR, Var # for iii in range(2000): while True: print(('-' * 30)) eval_data = next(eval_data_gen) if eval_data == False: print(('SDR_aver_eval_epoch:', SDR_SUM.mean())) print(('SDRi_aver_eval_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_feas'])) # raw_tgt = [sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']] raw_tgt= eval_data['batch_order'] feas_tgt = models.rank_feas(raw_tgt, eval_data['multi_spk_fea_list']) # 这里是目标的图谱 top_k = len(raw_tgt[0]) # 要保证底下这几个都是longTensor(长整数) # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。 tgt = Variable(torch.from_numpy(np.array([[0,1,2,102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 src_len = Variable(torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable(torch.LongTensor([len(one_spk) for one_spk in eval_data['multi_spk_fea_list']])).unsqueeze(0) # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0) if config.WFM: siz = src.size() # bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = 2 # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous().view(-1, siz[1], siz[ 2]) # bs,topk,T,F feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2]) feas_tgt_square = feas_tgt_tmp * feas_tgt_tmp feas_tgt_sum_square = torch.sum(feas_tgt_square, dim=1, keepdim=True).expand(siz[0], topk_max, siz[1], siz[2]) WFM_mask = feas_tgt_square / (feas_tgt_sum_square + 1e-15) feas_tgt = x_input_map_multi.view(siz[0], -1, siz[1], siz[2]).data * WFM_mask # bs,topk,T,F feas_tgt = feas_tgt.view(-1, siz[1], siz[2]) # bs*topk,T,F WFM_mask = WFM_mask.cuda() del x_input_map_multi elif config.PSM: siz = src.size() # bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = 2 # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous() # bs,topk,T,F feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2]) IRM=feas_tgt_tmp/(x_input_map_multi+1e-15) angle_tgt=models.rank_feas(raw_tgt, eval_data['multi_spk_angle_list']).view(siz[0],-1,siz[1],siz[2]) angle_mix=Variable(torch.from_numpy(np.array(eval_data['mix_angle']))).unsqueeze(1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous() ang=np.cos(angle_mix-angle_tgt) ang=np.clip(ang,0,None) # feas_tgt = x_input_map_multi *np.clip(IRM.numpy()*ang,0,1) # bs,topk,T,F # feas_tgt = x_input_map_multi *IRM*ang # bs,topk,T,F feas_tgt = feas_tgt.view(siz[0],-1,siz[1],siz[2])*ang # bs,topk,T,F feas_tgt = feas_tgt.view(-1, siz[1], siz[2]) # bs*topk,T,F del x_input_map_multi if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() if config.WFM: WFM_mask = WFM_mask.cuda() predicted_masks, enc_attn_list = model(src, src_len, tgt, tgt_len, dict_spk2idx) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 print('predicted mask size:', predicted_masks.size(),'should be topk,bs,T,F') # topk,bs,T,F # try: # ''' # expand the raw mixed-features to topk_max channel. src = src.transpose(0, 1) siz = src.size() assert len(siz) == 3 # if samples[0][-1] != dict_spk2idx['<EOS>']: # print '*'*40+'\nThe model is far from good. End the evaluation.\n'+'*'*40 # break topk_max = config.MAX_MIX x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]) predicted_masks=predicted_masks.transpose(0, 1) # if config.WFM: # feas_tgt = x_input_map_multi.data * WFM_mask # 注意,bs是第二维 assert predicted_masks.shape == x_input_map_multi.shape assert predicted_masks.size(0) == config.batch_size if 1 and len(opt.gpus) > 1: ss_loss,best_pmt = model.module.separation_pit_loss(x_input_map_multi, predicted_masks, feas_tgt, ) else: ss_loss,best_pmt = model.separation_pit_loss(x_input_map_multi, predicted_masks, feas_tgt) print(('loss for ss,this batch:', ss_loss.cpu().item())) print('best perms for this batch:', best_pmt) lera.log({ 'ss_loss_' + test_or_valid: ss_loss.cpu().item(), }) writer.add_scalars('scalar/loss',{'ss_loss_'+test_or_valid:ss_loss.cpu().item()},updates+batch_idx) del ss_loss if batch_idx>10: break if False: #this part is to test the checkpoints sequencially. batch_idx += 1 if batch_idx%100==0: updates=updates+1000 opt.restore='/data1/shijing_data/2020-02-14-04:58:17/Transformer_PIT_{}.pt'.format(updates) print('loading checkpoint...\n', opt.restore) checkpoints = torch.load(opt.restore) model.module.load_state_dict(checkpoints['model']) break continue # ''''' if 0 and batch_idx <= (500 / config.batch_size): # only the former batches counts the SDR predicted_maps = predicted_masks * x_input_map_multi predicted_maps = predicted_maps.view(-1,mix_speech_len,speech_fre) # predicted_maps=Variable(feas_tgt) utils.bss_eval2(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst='batch_output_test') # utils.bss_eval(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, # dst='batch_output_test') del predicted_maps, predicted_masks, x_input_map_multi try: sdr_aver_batch, sdri_aver_batch= bss_test.cal('batch_output_test/') SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch) except(AssertionError): print('Errors in calculating the SDR') print(('SDR_aver_now:', SDR_SUM.mean())) print(('SRi_aver_now:', SDRi_SUM.mean())) lera.log({'SDR sample'+test_or_valid: SDR_SUM.mean()}) lera.log({'SDRi sample'+test_or_valid: SDRi_SUM.mean()}) writer.add_scalars('scalar/loss',{'SDR_sample_'+test_or_valid:sdr_aver_batch},updates) # raw_input('Press any key to continue......') elif batch_idx == (200 / config.batch_size) + 1 and SDR_SUM.mean() > best_SDR: # only record the best SDR once. print(('Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean()))) best_SDR = SDR_SUM.mean() # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR)) # ''' # candidate += [convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>']) for s in samples] # source += raw_src # reference += raw_tgt # print(('samples:', samples)) # print(('can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:], reference[-1 * config.batch_size:]))) # alignments += [align for align in alignment] batch_idx += 1 result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path) print(('hamming_loss: %.8f | micro_f1: %.4f |recall: %.4f | precision: %.4f' % (result['hamming_loss'], result['micro_f1'], result['micro_recall'], result['micro_precision'], )))
def train(epoch): global e, updates, total_loss, start_time, report_total,report_correct, total_loss_sgm, total_loss_ss e = epoch model.train() SDR_SUM = np.array([]) SDRi_SUM = np.array([]) if updates<=config.warmup: #如果不在warm阶段就正常规划 pass elif config.schedule and scheduler.get_lr()[0]>4e-5: scheduler.step() print(("Decaying learning rate to %g" % scheduler.get_lr()[0],updates)) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) if opt.model == 'gated': model.current_epoch = epoch train_data_gen = prepare_data('once', 'train') while True: if updates <= config.warmup: # 如果在warm就开始warmup tmp_lr = config.learning_rate * min(max(updates,1)** (-0.5), max(updates,1) * (config.warmup ** (-1.5))) for param_group in optim.optimizer.param_groups: param_group['lr'] = tmp_lr scheduler.base_lrs=list([group['lr'] for group in optim.optimizer.param_groups]) if updates%100==0: #记录一下 print(updates) print("Warmup learning rate to %g" % tmp_lr) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) train_data = next(train_data_gen) if train_data == False: print(('SDR_aver_epoch:', SDR_SUM.mean())) print(('SDRi_aver_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(train_data['mix_feas'])) # raw_tgt = [spk.keys() for spk in train_data['multi_spk_fea_list']] # raw_tgt = [sorted(spk.keys()) for spk in train_data['multi_spk_fea_list']] raw_tgt=train_data['batch_order'] feas_tgt = models.rank_feas(raw_tgt, train_data['multi_spk_fea_list']) # 这里是目标的图谱,bs*Topk,len,fre # 要保证底下这几个都是longTensor(长整数) tgt_max_len = config.MAX_MIX + 2 # with bos and eos. tgt = Variable(torch.from_numpy(np.array( [[0] + [dict_spk2idx[spk] for spk in spks] + (tgt_max_len - len(spks) - 1) * [dict_spk2idx['<EOS>']] for spks in raw_tgt], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 # tgt = Variable(torch.from_numpy(np.array([[0,1,2,102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 src_len = Variable(torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([len(one_spk) for one_spk in train_data['multi_spk_fea_list']])).unsqueeze(0) if config.WFM: siz = src.size() # bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = 2 # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous().view(-1, siz[1], siz[ 2]) # bs,topk,T,F feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2]) feas_tgt_square = feas_tgt_tmp * feas_tgt_tmp feas_tgt_sum_square = torch.sum(feas_tgt_square, dim=1, keepdim=True).expand(siz[0], topk_max, siz[1], siz[2]) WFM_mask = feas_tgt_square / (feas_tgt_sum_square + 1e-15) feas_tgt = x_input_map_multi.view(siz[0], -1, siz[1], siz[2]).data * WFM_mask # bs,topk,T,F feas_tgt = feas_tgt.view(-1, siz[1], siz[2]) # bs*topk,T,F WFM_mask = WFM_mask.cuda() del x_input_map_multi elif config.PSM: siz = src.size() # bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = 2 # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous() # bs,topk,T,F feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2]) IRM=feas_tgt_tmp/(x_input_map_multi+1e-15) angle_tgt=models.rank_feas(raw_tgt, train_data['multi_spk_angle_list']).view(siz[0],-1,siz[1],siz[2]) # bs,topk,T,F angle_mix=Variable(torch.from_numpy(np.array(train_data['mix_angle']))).unsqueeze(1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous() ang=np.cos(angle_mix-angle_tgt) ang=np.clip(ang,0,None) # feas_tgt = x_input_map_multi *np.clip(IRM.numpy()*ang,0,1) # bs,topk,T,F # feas_tgt = x_input_map_multi *IRM*ang # bs,topk,T,F feas_tgt = feas_tgt.view(siz[0],-1,siz[1],siz[2])*ang # bs,topk,T,F feas_tgt = feas_tgt.view(-1, siz[1], siz[2]) # bs*topk,T,F del x_input_map_multi elif config.frame_mask: siz = src.size() # bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = 2 # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous() # bs,topk,T,F feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2]) feas_tgt_time=torch.sum(feas_tgt_tmp,3).transpose(1,2) #bs,T,topk for v1 in feas_tgt_time: for v2 in v1: if v2[0]>v2[1]: v2[0]=1 v2[1]=0 else: v2[0]=0 v2[1]=1 frame_mask=feas_tgt_time.transpose(1,2).unsqueeze(-1) #bs,topk,t,1 feas_tgt=x_input_map_multi*frame_mask feas_tgt = feas_tgt.view(-1, siz[1], siz[2]) # bs*topk,T,F if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() model.zero_grad() if config.use_center_loss: center_loss.zero_grad() # aim_list 就是找到有正经说话人的地方的标号 aim_list = (tgt[1:-1].transpose(0, 1).contiguous().view(-1) != dict_spk2idx['<EOS>']).nonzero().squeeze() aim_list = aim_list.data.cpu().numpy() multi_mask, enc_attn_list = model(src, src_len, tgt, tgt_len, dict_spk2idx) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 print('mask size:', multi_mask.size()) # topk,bs,T,F # print('mask:', multi_mask[0,0,:3:3]) # topk,bs,T,F # writer.add_histogram('global gamma',gamma, updates) src = src.transpose(0, 1) # expand the raw mixed-features to topk_max channel. siz = src.size() assert len(siz) == 3 topk_max = config.MAX_MIX # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous()#.view(-1, siz[1], siz[2]) # x_input_map_multi = x_input_map_multi[aim_list] # x_input_map_multi = x_input_map_multi.transpose(0, 1) #topk,bs,T,F multi_mask = multi_mask.transpose(0, 1) # if config.WFM: # feas_tgt = x_input_map_multi.data * WFM_mask # 注意,bs是第二维 assert multi_mask.shape == x_input_map_multi.shape assert multi_mask.size(0) == config.batch_size if 1 and len(opt.gpus) > 1: #先ss获取Perm ss_loss, best_pmt = model.module.separation_pit_loss(x_input_map_multi, multi_mask, feas_tgt) else: ss_loss, best_pmt = model.separation_pit_loss(x_input_map_multi, multi_mask, feas_tgt) print('loss for SS,this batch:', ss_loss.cpu().item()) print('best perms for this batch:', best_pmt) writer.add_scalars('scalar/loss',{'ss_loss':ss_loss.cpu().item()},updates) loss = ss_loss loss.backward() total_loss_ss += ss_loss.cpu().item() lera.log({ 'ss_loss': ss_loss.cpu().item(), }) if updates>3 and updates % config.eval_interval in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,]: assert multi_mask.shape==x_input_map_multi.shape assert multi_mask.size(0)==config.batch_size predicted_maps = (multi_mask * x_input_map_multi).view(siz[0]*topk_max,siz[1],siz[2]) # predicted_maps=Variable(feas_tgt) # utils.bss_eval(config, predicted_maps, train_data['multi_spk_fea_list'], raw_tgt, train_data, dst=log_path+'batch_output/') utils.bss_eval2(config, predicted_maps, train_data['multi_spk_fea_list'], raw_tgt, train_data, dst=log_path+'batch_output') del predicted_maps, multi_mask, x_input_map_multi sdr_aver_batch, sdri_aver_batch= bss_test.cal(log_path+'batch_output/') lera.log({'SDR sample': sdr_aver_batch}) lera.log({'SDRi sample': sdri_aver_batch}) writer.add_scalars('scalar/loss',{'SDR_sample':sdr_aver_batch,'SDRi_sample':sdri_aver_batch},updates) SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch) print(('SDR_aver_now:', SDR_SUM.mean())) print(('SDRi_aver_now:', SDRi_SUM.mean())) # Heatmap here # n_layer个 (head*bs) x lq x dk ''' import matplotlib.pyplot as plt ax = plt.gca() ax.invert_yaxis() raw_src=models.rank_feas(raw_tgt, train_data['multi_spk_fea_list']) att_idx=1 att = enc_attn_list[-1].view(config.trans_n_head,config.batch_size,mix_speech_len,mix_speech_len).data.cpu().numpy()[:,att_idx] for head in range(config.trans_n_head): xx=att[head] plt.matshow(xx, cmap=plt.cm.hot, vmin=0,vmax=0.05) plt.colorbar() plt.savefig(log_path+'batch_output/'+'head_{}.png'.format(head)) plt.matshow(raw_src[att_idx*2+0].transpose(0,1), cmap=plt.cm.hot, vmin=0,vmax=2) plt.colorbar() plt.savefig(log_path+'batch_output/'+'source0.png') plt.matshow(raw_src[att_idx*2+1].transpose(0,1), cmap=plt.cm.hot, vmin=0,vmax=2) plt.colorbar() plt.savefig(log_path+'batch_output/'+'source1.png') 1/0 ''' total_loss += loss.cpu().item() optim.step() updates += 1 if updates % 30 == 0: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,ss loss: %6.6f\n" % (time.time() - start_time, epoch, updates, loss , total_loss_ss / 30.0)) total_loss_sgm, total_loss_ss = 0, 0 # continue if 0 and updates % config.eval_interval == 0 and epoch > 3: #建议至少跑几个epoch再进行测试,否则模型还没学到东西,会有很多问题。 logging("time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n" % (time.time() - start_time, epoch, updates, total_loss/config.eval_interval)) print(('evaluating after %d updates...\r' % updates)) eval(epoch,'valid') # eval的时候batch_size会变成1 eval(epoch,'test') # eval的时候batch_size会变成1 model.train() total_loss = 0 start_time = 0 report_total = 0 report_correct = 0 if 1 and updates % config.save_interval == 1: save_model(log_path + 'Transformer_PIT_{}.pt'.format(updates))
def eval(epoch, test_or_valid='valid'): # config.batch_size=1 global updates, model model.eval() # print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1' reference, candidate, source, alignments = [], [], [], [] e = epoch print(('Test or valid:', test_or_valid)) eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) SDR_SUM = np.array([]) SDRi_SUM = np.array([]) batch_idx = 0 global best_SDR, Var # for iii in range(2000): while True: print(('-' * 30)) eval_data = next(eval_data_gen) if eval_data == False: print(('SDR_aver_eval_epoch:', SDR_SUM.mean())) print(('SDRi_aver_eval_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_complex_two_channel']) ) # bs,T,F,2 both real and imag values raw_tgt = eval_data['batch_order'] feas_tgt = models.rank_feas( raw_tgt, eval_data['multi_spk_wav_list']) # 这里是目标的图谱,bs*Topk,time_len padded_mixture, mixture_lengths, padded_source = eval_data['tas_zip'] padded_mixture = torch.from_numpy(padded_mixture).float() mixture_lengths = torch.from_numpy(mixture_lengths) padded_source = torch.from_numpy(padded_source).float() padded_mixture = padded_mixture.cuda().transpose(0, 1) mixture_lengths = mixture_lengths.cuda() padded_source = padded_source.cuda() # 要保证底下这几个都是longTensor(长整数) tgt = Variable( torch.from_numpy( np.array([[0, 1, 2, 102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in eval_data['multi_spk_fea_list'] ])).unsqueeze(0) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() model.zero_grad() if config.use_center_loss: center_loss.zero_grad() multi_mask_real, multi_mask_imag, enc_attn_list = model( src, src_len, tgt, tgt_len, dict_spk2idx) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 multi_mask_real = multi_mask_real.transpose(0, 1) multi_mask_imag = multi_mask_imag.transpose(0, 1) src_real = src[:, :, :, 0].transpose(0, 1) # bs,T,F src_imag = src[:, :, :, 1].transpose(0, 1) # bs,T,F print('mask size for real/imag:', multi_mask_real.size()) # bs,topk,T,F, 已经压缩过了 print('mixture size for real/imag:', src_real.size()) # bs,T,F predicted_maps0_real = multi_mask_real[:, 0] * src_real - multi_mask_imag[:, 0] * src_imag #bs,T,F predicted_maps0_imag = multi_mask_real[:, 0] * src_imag + multi_mask_imag[:, 0] * src_real #bs,T,F predicted_maps1_real = multi_mask_real[:, 1] * src_real - multi_mask_imag[:, 1] * src_imag #bs,T,F predicted_maps1_imag = multi_mask_real[:, 1] * src_imag + multi_mask_imag[:, 1] * src_real #bs,T,F stft_matrix_spk0 = torch.cat((predicted_maps0_real.unsqueeze(-1), predicted_maps0_imag.unsqueeze(-1)), 3).transpose(1, 2) # bs,F,T,2 stft_matrix_spk1 = torch.cat((predicted_maps1_real.unsqueeze(-1), predicted_maps1_imag.unsqueeze(-1)), 3).transpose(1, 2) # bs,F,T,2 wav_spk0 = models.istft_irfft(stft_matrix_spk0, length=config.MAX_LEN, hop_length=config.FRAME_SHIFT, win_length=config.FRAME_LENGTH, window='hann') wav_spk1 = models.istft_irfft(stft_matrix_spk1, length=config.MAX_LEN, hop_length=config.FRAME_SHIFT, win_length=config.FRAME_LENGTH, window='hann') predict_wav = torch.cat((wav_spk0.unsqueeze(1), wav_spk1.unsqueeze(1)), 1) # bs,topk,time_len if 1 and len(opt.gpus) > 1: ss_loss, pmt_list, max_snr_idx, *__ = model.module.separation_tas_loss( padded_mixture, predict_wav, padded_source, mixture_lengths) else: ss_loss, pmt_list, max_snr_idx, *__ = model.separation_tas_loss( padded_mixture, predict_wav, padded_source, mixture_lengths) best_pmt = [ list(pmt_list[int(mm)].data.cpu().numpy()) for mm in max_snr_idx ] print('loss for SS,this batch:', ss_loss.cpu().item()) print('best perms for this batch:', best_pmt) writer.add_scalars('scalar/loss', {'ss_loss': ss_loss.cpu().item()}, updates) lera.log({ 'ss_loss_' + test_or_valid: ss_loss.cpu().item(), }) writer.add_scalars('scalar/loss', {'ss_loss_' + test_or_valid: ss_loss.cpu().item()}, updates + batch_idx) del ss_loss # if batch_idx>10: # break if False: #this part is to test the checkpoints sequencially. batch_idx += 1 if batch_idx % 100 == 0: updates = updates + 1000 opt.restore = '/data1/shijing_data/2020-02-14-04:58:17/Transformer_PIT_{}.pt'.format( updates) print('loading checkpoint...\n', opt.restore) checkpoints = torch.load(opt.restore) model.module.load_state_dict(checkpoints['model']) break continue # ''''' if 1 and batch_idx <= (500 / config.batch_size): utils.bss_eval_tas(config, predict_wav, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst=log_path + 'batch_output') sdr_aver_batch, snri_aver_batch = bss_test.cal(log_path + 'batch_output/') lera.log({'SDR sample': sdr_aver_batch}) lera.log({'SI-SNRi sample': snri_aver_batch}) writer.add_scalars('scalar/loss', { 'SDR_sample': sdr_aver_batch, 'SDRi_sample': snri_aver_batch }, updates) SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, snri_aver_batch) print(('SDR_aver_now:', SDR_SUM.mean())) print(('SNRi_aver_now:', SDRi_SUM.mean())) batch_idx += 1 if batch_idx > 100: break result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path) print(( 'hamming_loss: %.8f | micro_f1: %.4f |recall: %.4f | precision: %.4f' % ( result['hamming_loss'], result['micro_f1'], result['micro_recall'], result['micro_precision'], )))
def train(epoch): global e, updates, total_loss, start_time, report_total, report_correct, total_loss_sgm, total_loss_ss e = epoch model.train() SDR_SUM = np.array([]) SDRi_SUM = np.array([]) if updates <= config.warmup: #如果不在warm阶段就正常规划 pass elif config.schedule and scheduler.get_lr()[0] > 4e-5: scheduler.step() print( ("Decaying learning rate to %g" % scheduler.get_lr()[0], updates)) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) if opt.model == 'gated': model.current_epoch = epoch train_data_gen = prepare_data('once', 'train') while True: if updates <= config.warmup: # 如果在warm就开始warmup tmp_lr = config.learning_rate * min( max(updates, 1)**(-0.5), max(updates, 1) * (config.warmup**(-1.5))) for param_group in optim.optimizer.param_groups: param_group['lr'] = tmp_lr scheduler.base_lrs = list( [group['lr'] for group in optim.optimizer.param_groups]) if updates % 100 == 0: #记录一下 print(updates) print("Warmup learning rate to %g" % tmp_lr) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) train_data = next(train_data_gen) if train_data == False: print(('SDR_aver_epoch:', SDR_SUM.mean())) print(('SDRi_aver_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(train_data['mix_complex_two_channel']) ) # bs,T,F,2 both real and imag values raw_tgt = train_data['batch_order'] feas_tgt = models.rank_feas( raw_tgt, train_data['multi_spk_wav_list']) # 这里是目标的图谱,bs*Topk,time_len padded_mixture, mixture_lengths, padded_source = train_data['tas_zip'] padded_mixture = torch.from_numpy(padded_mixture).float() mixture_lengths = torch.from_numpy(mixture_lengths) padded_source = torch.from_numpy(padded_source).float() padded_mixture = padded_mixture.cuda().transpose(0, 1) mixture_lengths = mixture_lengths.cuda() padded_source = padded_source.cuda() # 要保证底下这几个都是longTensor(长整数) tgt_max_len = config.MAX_MIX + 2 # with bos and eos. tgt = Variable( torch.from_numpy( np.array( [[0] + [dict_spk2idx[spk] for spk in spks] + (tgt_max_len - len(spks) - 1) * [dict_spk2idx['<EOS>']] for spks in raw_tgt], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 # tgt = Variable(torch.from_numpy(np.array([[0,1,2,102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in train_data['multi_spk_fea_list'] ])).unsqueeze(0) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() model.zero_grad() if config.use_center_loss: center_loss.zero_grad() multi_mask_real, multi_mask_imag, enc_attn_list = model( src, src_len, tgt, tgt_len, dict_spk2idx) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 multi_mask_real = multi_mask_real.transpose(0, 1) multi_mask_imag = multi_mask_imag.transpose(0, 1) src_real = src[:, :, :, 0].transpose(0, 1) # bs,T,F src_imag = src[:, :, :, 1].transpose(0, 1) # bs,T,F print('mask size for real/imag:', multi_mask_real.size()) # bs,topk,T,F, 已经压缩过了 print('mixture size for real/imag:', src_real.size()) # bs,T,F predicted_maps0_real = multi_mask_real[:, 0] * src_real - multi_mask_imag[:, 0] * src_imag #bs,T,F predicted_maps0_imag = multi_mask_real[:, 0] * src_imag + multi_mask_imag[:, 0] * src_real #bs,T,F predicted_maps1_real = multi_mask_real[:, 1] * src_real - multi_mask_imag[:, 1] * src_imag #bs,T,F predicted_maps1_imag = multi_mask_real[:, 1] * src_imag + multi_mask_imag[:, 1] * src_real #bs,T,F stft_matrix_spk0 = torch.cat((predicted_maps0_real.unsqueeze(-1), predicted_maps0_imag.unsqueeze(-1)), 3).transpose(1, 2) # bs,F,T,2 stft_matrix_spk1 = torch.cat((predicted_maps1_real.unsqueeze(-1), predicted_maps1_imag.unsqueeze(-1)), 3).transpose(1, 2) # bs,F,T,2 wav_spk0 = models.istft_irfft(stft_matrix_spk0, length=config.MAX_LEN, hop_length=config.FRAME_SHIFT, win_length=config.FRAME_LENGTH, window='hann') wav_spk1 = models.istft_irfft(stft_matrix_spk1, length=config.MAX_LEN, hop_length=config.FRAME_SHIFT, win_length=config.FRAME_LENGTH, window='hann') predict_wav = torch.cat((wav_spk0.unsqueeze(1), wav_spk1.unsqueeze(1)), 1) # bs,topk,time_len if 1 and len(opt.gpus) > 1: ss_loss, pmt_list, max_snr_idx, *__ = model.module.separation_tas_loss( padded_mixture, predict_wav, padded_source, mixture_lengths) else: ss_loss, pmt_list, max_snr_idx, *__ = model.separation_tas_loss( padded_mixture, predict_wav, padded_source, mixture_lengths) best_pmt = [ list(pmt_list[int(mm)].data.cpu().numpy()) for mm in max_snr_idx ] print('loss for SS,this batch:', ss_loss.cpu().item()) print('best perms for this batch:', best_pmt) writer.add_scalars('scalar/loss', {'ss_loss': ss_loss.cpu().item()}, updates) loss = ss_loss loss.backward() total_loss_ss += ss_loss.cpu().item() lera.log({ 'ss_loss': ss_loss.cpu().item(), }) if epoch > 20 and updates > 5 and updates % config.eval_interval in [ 0, 1, 2, 3, 4 ]: utils.bss_eval_tas(config, predict_wav, train_data['multi_spk_fea_list'], raw_tgt, train_data, dst=log_path + 'batch_output') sdr_aver_batch, snri_aver_batch = bss_test.cal(log_path + 'batch_output/') lera.log({'SDR sample': sdr_aver_batch}) lera.log({'SI-SNRi sample': snri_aver_batch}) writer.add_scalars('scalar/loss', { 'SDR_sample': sdr_aver_batch, 'SDRi_sample': snri_aver_batch }, updates) SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, snri_aver_batch) print(('SDR_aver_now:', SDR_SUM.mean())) print(('SNRi_aver_now:', SDRi_SUM.mean())) # Heatmap here # n_layer个 (head*bs) x lq x dk ''' import matplotlib.pyplot as plt ax = plt.gca() ax.invert_yaxis() raw_src=models.rank_feas(raw_tgt, train_data['multi_spk_fea_list']) att_idx=1 att = enc_attn_list[-1].view(config.trans_n_head,config.batch_size,mix_speech_len,mix_speech_len).data.cpu().numpy()[:,att_idx] for head in range(config.trans_n_head): xx=att[head] plt.matshow(xx, cmap=plt.cm.hot, vmin=0,vmax=0.05) plt.colorbar() plt.savefig(log_path+'batch_output/'+'head_{}.png'.format(head)) plt.matshow(raw_src[att_idx*2+0].transpose(0,1), cmap=plt.cm.hot, vmin=0,vmax=2) plt.colorbar() plt.savefig(log_path+'batch_output/'+'source0.png') plt.matshow(raw_src[att_idx*2+1].transpose(0,1), cmap=plt.cm.hot, vmin=0,vmax=2) plt.colorbar() plt.savefig(log_path+'batch_output/'+'source1.png') 1/0 ''' total_loss += loss.cpu().item() optim.step() updates += 1 if updates % 30 == 0: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,ss loss: %6.6f\n" % (time.time() - start_time, epoch, updates, loss, total_loss_ss / 30.0)) total_loss_sgm, total_loss_ss = 0, 0 # continue if 1 and updates % config.save_interval == 1: save_model(log_path + 'Transformer_PIT_2ch_{}.pt'.format(updates)) if 0 and updates > 0 and updates % config.eval_interval == 3: #建议至少跑几个epoch再进行测试,否则模型还没学到东西,会有很多问题。 logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n" % (time.time() - start_time, epoch, updates, total_loss / config.eval_interval)) print(('evaluating after %d updates...\r' % updates)) eval(epoch, 'valid') # eval的时候batch_size会变成1 eval(epoch, 'test') # eval的时候batch_size会变成1 model.train() total_loss = 0 start_time = 0 report_total = 0 report_correct = 0
def train(epoch): e = epoch model.train() SDR_SUM = np.array([]) if config.schedule: scheduler.step() print("Decaying learning rate to %g" % scheduler.get_lr()[0]) if config.is_dis: scheduler_dis.step() lera.log({ 'lr': scheduler.get_lr()[0], }) if opt.model == 'gated': model.current_epoch = epoch global e, updates, total_loss, start_time, report_total, total_loss_sgm, total_loss_ss if config.MLMSE: global Var train_data_gen = prepare_data('once', 'train') # for raw_src, src, src_len, raw_tgt, tgt, tgt_len in trainloader: while True: try: train_data = train_data_gen.next() if train_data == False: print 'SDR_aver_epoch:', SDR_SUM.mean() break #如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(train_data['mix_feas'])) # raw_tgt = [spk.keys() for spk in train_data['multi_spk_fea_list']] raw_tgt = [ sorted(spk.keys()) for spk in train_data['multi_spk_fea_list'] ] feas_tgt = models.rank_feas( raw_tgt, train_data['multi_spk_fea_list']) #这里是目标的图谱,aim_size,len,fre # 要保证底下这几个都是longTensor(长整数) tgt_max_len = config.MAX_MIX + 2 # with bos and eos. tgt = Variable( torch.from_numpy( np.array([[0] + [dict_spk2idx[spk] for spk in spks] + (tgt_max_len - len(spks) - 1) * [dict_spk2idx['<EOS>']] for spks in raw_tgt], dtype=np.int))).transpose(0, 1) #转换成数字,然后前后加开始和结束符号。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in train_data['multi_spk_fea_list'] ])).unsqueeze(0) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() model.zero_grad() # optim.optimizer.zero_grad() # aim_list 就是找到有正经说话人的地方的标号 aim_list = (tgt[1:-1].transpose(0, 1).contiguous().view(-1) != dict_spk2idx['<EOS>']).nonzero().squeeze() aim_list = aim_list.data.cpu().numpy() outputs, targets, multi_mask = model( src, src_len, tgt, tgt_len, dict_spk2idx) #这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 print 'mask size:', multi_mask.size() if 1 and len(opt.gpus) > 1: sgm_loss, num_total, num_correct = model.module.compute_loss( outputs, targets, opt.memory) else: sgm_loss, num_total, num_correct = model.compute_loss( outputs, targets, opt.memory) print 'loss for SGM,this batch:', sgm_loss.data[0] / num_total src = src.transpose(0, 1) # expand the raw mixed-features to topk_max channel. siz = src.size() assert len(siz) == 3 topk_max = config.MAX_MIX #最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous().view(-1, siz[1], siz[2]) x_input_map_multi = x_input_map_multi[aim_list] multi_mask = multi_mask.transpose(0, 1) if 1 and len(opt.gpus) > 1: if config.MLMSE: Var = model.module.update_var(x_input_map_multi, multi_mask, feas_tgt) lera.log_image(u'Var weight', Var.data.cpu().numpy().reshape( config.speech_fre, config.speech_fre, 1).repeat(3, 2), clip=(-1, 1)) ss_loss = model.module.separation_loss( x_input_map_multi, multi_mask, feas_tgt, Var) else: ss_loss = model.module.separation_loss( x_input_map_multi, multi_mask, feas_tgt) else: ss_loss = model.separation_loss(x_input_map_multi, multi_mask, feas_tgt) loss = sgm_loss + 5 * ss_loss # dis_loss model if config.is_dis: dis_loss = models.loss.dis_loss(config, topk_max, model_dis, x_input_map_multi, multi_mask, feas_tgt, func_dis) loss = loss + dis_loss # print 'dis_para',model_dis.parameters().next()[0] # print 'ss_para',model.parameters().next()[0] loss.backward() # print 'totallllllllllll loss:',loss total_loss_sgm += sgm_loss.data[0] total_loss_ss += ss_loss.data[0] lera.log({ 'sgm_loss': sgm_loss.data[0], 'ss_loss': ss_loss.data[0], 'loss:': loss.data[0], }) if (updates % config.eval_interval) in [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]: predicted_maps = multi_mask * x_input_map_multi # predicted_maps=Variable(feas_tgt) utils.bss_eval(config, predicted_maps, train_data['multi_spk_fea_list'], raw_tgt, train_data, dst='batch_outputjaa') del predicted_maps, multi_mask, x_input_map_multi # raw_input('wait to continue......') sdr_aver_batch = bss_test.cal('batch_outputjaa/') lera.log({'SDR sample': sdr_aver_batch}) SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) print 'SDR_aver_now:', SDR_SUM.mean() total_loss += loss.data[0] report_total += num_total optim.step() if config.is_dis: optim_dis.step() updates += 1 if updates % 30 == 0: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,sgm loss: %6.6f,ss loss: %6.6f\n" % (time.time() - start_time, epoch, updates, loss / num_total, total_loss_sgm / 30.0, total_loss_ss / 30.0)) total_loss_sgm, total_loss_ss = 0, 0 # continue if 0 or updates % config.eval_interval == 0 and epoch > 1: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n" % (time.time() - start_time, epoch, updates, total_loss / report_total)) print('evaluating after %d updates...\r' % updates) # score = eval(epoch) for metric in config.metric: scores[metric].append(score[metric]) lera.log({ 'sgm_micro_f1': score[metric], }) if metric == 'micro_f1' and score[metric] >= max( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') if metric == 'hamming_loss' and score[metric] <= min( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') model.train() total_loss = 0 start_time = 0 report_total = 0 except RuntimeError, eeee: print 'Erros here eeee: ', eeee continue except Exception, dddd: print '\n\n\nRare errors: ', dddd continue
def eval(epoch): model.eval() reference, candidate, source, alignments = [], [], [], [] e = epoch test_or_valid = 'test' print 'Test or valid:', test_or_valid eval_data_gen = prepare_data_aim('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) # for raw_src, src, src_len, raw_tgt, tgt, tgt_len in validloader: SDR_SUM = np.array([]) batch_idx = 0 global best_SDR, Var while True: # for ___ in range(2): print '-' * 30 eval_data = eval_data_gen.next() if eval_data == False: print 'SDR_aver_eval_epoch:', SDR_SUM.mean() break #如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_feas'])) raw_tgt = [ sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list'] ] feas_tgt = models.rank_feas(raw_tgt, eval_data['multi_spk_fea_list']) #这里是目标的图谱 top_k = len(raw_tgt[0]) # 要保证底下这几个都是longTensor(长整数) # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。 tgt = Variable(torch.ones( top_k + 2, config.batch_size)) # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in eval_data['multi_spk_fea_list'] ])).unsqueeze(0) # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0) if config.WFM: tmp_size = feas_tgt.size() assert len(tmp_size) == 4 feas_tgt_sum = torch.sum(feas_tgt, dim=1, keepdim=True) feas_tgt_sum_square = (feas_tgt_sum * feas_tgt_sum).expand(tmp_size) feas_tgt_square = feas_tgt * feas_tgt WFM_mask = feas_tgt_square / feas_tgt_sum_square if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() if config.WFM: WFM_mask = WFM_mask.cuda() try: if 1 and len(opt.gpus) > 1: # samples, alignment = model.module.sample(src, src_len) samples, alignment, hiddens, predicted_masks = model.module.beam_sample( src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) else: samples, alignment, hiddens, predicted_masks = model.beam_sample( src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) # samples, alignment, hiddens, predicted_masks = model.beam_sample(src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) except TabError, info: print '**************Error occurs here************:', info continue if config.top1: predicted_masks = torch.cat([predicted_masks, 1 - predicted_masks], 1) # ''' # expand the raw mixed-features to topk_max channel. src = src.transpose(0, 1) siz = src.size() assert len(siz) == 3 topk_max = feas_tgt.size()[1] assert samples[0][-1] == dict_spk2idx['<EOS>'] topk_max = len(samples[0]) - 1 x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]) if config.WFM: feas_tgt = x_input_map_multi.data * WFM_mask if test_or_valid == 'valid': if 1 and len(opt.gpus) > 1: ss_loss = model.module.separation_loss(x_input_map_multi, predicted_masks, feas_tgt, Var) else: ss_loss = model.separation_loss(x_input_map_multi, predicted_masks, feas_tgt) print 'loss for ss,this batch:', ss_loss.data[0] lera.log({ 'ss_loss_' + test_or_valid: ss_loss.data[0], }) del ss_loss, hiddens # ''''' if batch_idx <= (500 / config.batch_size ): #only the former batches counts the SDR predicted_maps = predicted_masks * x_input_map_multi # predicted_maps=Variable(feas_tgt) utils.bss_eval2(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst='batch_outputjaa') del predicted_maps, predicted_masks, x_input_map_multi SDR_SUM = np.append(SDR_SUM, bss_test.cal('batch_outputjaa/')) print 'SDR_aver_now:', SDR_SUM.mean() lera.log({'SDR sample': SDR_SUM.mean()}) # raw_input('Press any key to continue......') elif batch_idx == (500 / config.batch_size) + 1 and SDR_SUM.mean( ) > best_SDR: #only record the best SDR once. print 'Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean()) best_SDR = SDR_SUM.mean() # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR)) # ''' candidate += [ convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>']) for s in samples ] # source += raw_src reference += raw_tgt print 'samples:', samples print 'can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:], reference[-1 * config.batch_size:]) alignments += [align for align in alignment] batch_idx += 1
def train(epoch): global e, updates, total_loss, start_time, report_total, report_correct, total_loss_sgm, total_loss_ss e = epoch model.train() SDR_SUM = np.array([]) SDRi_SUM = np.array([]) if updates <= config.warmup: #如果不在warm阶段就正常规划 pass elif config.schedule and scheduler.get_lr()[0] > 5e-7: scheduler.step() print(("Decaying learning rate to %g" % scheduler.get_lr()[0])) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) if opt.model == 'gated': model.current_epoch = epoch # train_data_gen = prepare_data('once', 'train') train_data_gen = musdb.DB(root="~/MUSDB18/", subsets='train', split='train') train_data_gen = batch_generator( list(train_data_gen), config.batch_size, ) # while 1: # mix,ref=next(train_data_gen) # import soundfile as sf # sf.write('mix.wav',mix[0,0],44100) # sf.write('vocal.wav',ref[0,0,0],44100) # sf.write('drum.wav',ref[0,1,0],44100) # sf.write('bass.wav',ref[0,2,0],44100) # sf.write('other.wav',ref[0,3,0],44100) # pass while True: if updates <= config.warmup: # 如果在warm就开始warmup tmp_lr = config.learning_rate * min( max(updates, 1)**(-0.5), max(updates, 1) * (config.warmup**(-1.5))) for param_group in optim.optimizer.param_groups: param_group['lr'] = tmp_lr scheduler.base_lrs = list( [group['lr'] for group in optim.optimizer.param_groups]) if updates % 100 == 0: #记录一下 print(updates) print("Warmup learning rate to %g" % tmp_lr) lera.log({ 'lr': [group['lr'] for group in optim.optimizer.param_groups][0], }) train_data = next(train_data_gen) if train_data == False: print(('SDR_aver_epoch:', SDR_SUM.mean())) print(('SDRi_aver_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch padded_mixture, mixture_lengths, padded_source = train_data # source:bs,2channel,T target:bs,4(vocals,drums,bass,other),2channel,T padded_mixture = torch.from_numpy(padded_mixture).float() topk_this_batch = padded_source.shape[1] mixture_lengths = torch.from_numpy(mixture_lengths) padded_source = torch.from_numpy(padded_source).float() # 要保证底下这几个都是longTensor(长整数) if use_cuda: padded_mixture = padded_mixture.cuda().transpose(0, 1) mixture_lengths = mixture_lengths.cuda() padded_source = padded_source.cuda() # src = src.cuda().transpose(0, 1) # tgt = tgt.cuda() # src_len = src_len.cuda() # tgt_len = tgt_len.cuda() # feas_tgt = feas_tgt.cuda() if 0 and loss < -5: import soundfile as sf idx_in_batch = 0 sf.write( str(idx_in_batch) + '_mix.wav', padded_mixture.transpose( 0, 1).data.cpu().numpy()[idx_in_batch].transpose(), 44100) sf.write( str(idx_in_batch) + '_ref_vocal.wav', padded_source.data.cpu().numpy()[idx_in_batch, 0].transpose(), 44100) sf.write( str(idx_in_batch) + '_ref_drum.wav', padded_source.data.cpu().numpy()[idx_in_batch, 1].transpose(), 44100) sf.write( str(idx_in_batch) + '_ref_bass.wav', padded_source.data.cpu().numpy()[idx_in_batch, 2].transpose(), 44100) sf.write( str(idx_in_batch) + '_ref_other.wav', padded_source.data.cpu().numpy()[idx_in_batch, 3].transpose(), 44100) model.zero_grad() outputs, pred, spks_ordre_list, multi_mask, y_map = model( None, None, None, None, dict_spk2idx, None, mix_wav=padded_mixture, clean_wavs=padded_source.transpose( 0, 1)) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 print('mask size:', multi_mask.size()) print('y map size:', y_map.size()) # print('spk order:', spks_ordre_list) # bs,topk # writer.add_histogram('global gamma',gamma, updates) multi_mask = multi_mask.transpose(0, 1) y_map = y_map.transpose(0, 1) spks_ordre_list = spks_ordre_list.transpose(0, 1) # expand the raw mixed-features to topk_max channel. topk_max = topk_this_batch # 最多可能的topk个数 if config.greddy_tf and config.add_last_silence: multi_mask, silence_channel = torch.split(multi_mask, [topk_this_batch, 1], dim=1) silence_channel = silence_channel[:, 0] assert len(padded_source.shape) == 3 # padded_source = torch.cat([padded_source,torch.zeros(padded_source.size(0),1,padded_source.size(2))],1) if 1 and len(opt.gpus) > 1: ss_loss_silence = model.module.silence_loss(silence_channel) else: ss_loss_silence = model.silence_loss(silence_channel) print('loss for SS silence,this batch:', ss_loss_silence.cpu().item()) writer.add_scalars( 'scalar/loss', {'ss_loss_silence': ss_loss_silence.cpu().item()}, updates) lera.log({'ss_loss_silence': ss_loss_silence.cpu().item()}) if torch.isnan(ss_loss_silence): ss_loss_silence = 0 if config.use_tas: # print('source',padded_source) # print('est', multi_mask) if 1 and len(opt.gpus) > 1: ss_loss = model.module.separation_tas_sdr_order_loss( padded_mixture.transpose(0, 1), multi_mask, y_map, mixture_lengths) else: ss_loss = model.separation_tas_sdr_order_loss( padded_mixture, multi_mask, y_map, mixture_lengths) # best_pmt=[list(pmt_list[int(mm)].data.cpu().numpy()) for mm in max_snr_idx] print('loss for SS,this batch:', ss_loss.cpu().item()) # print('best perms for this batch:', best_pmt) print('greddy perms for this batch:', [ii for ii in spks_ordre_list.data.cpu().numpy()]) writer.add_scalars('scalar/loss', {'ss_loss': ss_loss.cpu().item()}, updates) loss = ss_loss if config.add_last_silence: loss = loss + 0.1 * ss_loss_silence loss.backward() # print 'totallllllllllll loss:',loss total_loss_ss += ss_loss.cpu().item() lera.log({ 'ss_loss_' + str(topk_this_batch): ss_loss.cpu().item(), 'loss:': loss.cpu().item(), 'pre_min': multi_mask.data.cpu().numpy().min(), 'pre_max': multi_mask.data.cpu().numpy().max(), }) if 1 or loss < -5: import soundfile as sf idx_in_batch = 0 y0 = multi_mask.data.cpu().numpy()[idx_in_batch, 0] y1 = multi_mask.data.cpu().numpy()[idx_in_batch, 1] y2 = multi_mask.data.cpu().numpy()[idx_in_batch, 2] y3 = multi_mask.data.cpu().numpy()[idx_in_batch, 3] # sf.write(str(idx_in_batch)+'_pre_0.wav',multi_mask.data.cpu().numpy()[idx_in_batch,0].transpose(),44100) # sf.write(str(idx_in_batch)+'_pre_1.wav',multi_mask.data.cpu().numpy()[idx_in_batch,1].transpose(),44100) # sf.write(str(idx_in_batch)+'_pre_2.wav',multi_mask.data.cpu().numpy()[idx_in_batch,2].transpose(),44100) # sf.write(str(idx_in_batch)+'_pre_3.wav',multi_mask.data.cpu().numpy()[idx_in_batch,3].transpose(),44100) print('y0 range:', y0.min(), y0.max()) print('y1 range:', y1.min(), y1.max()) print('y2 range:', y2.min(), y2.max()) print('y3 range:', y3.min(), y3.max()) # input('wait') print('*' * 50) if 0 and updates > 10 and updates % config.eval_interval in [ 0, 1, 2, 3, 4, 5 ]: utils.bss_eval_tas(config, multi_mask, train_data['multi_spk_fea_list'], raw_tgt, train_data, dst=log_path + '/batch_output1') sdr_aver_batch, sdri_aver_batch = bss_test.cal(log_path + '/batch_output1/') lera.log({'SDR sample': sdr_aver_batch}) lera.log({'SDRi sample': sdri_aver_batch}) writer.add_scalars('scalar/loss', { 'SDR_sample': sdr_aver_batch, 'SDRi_sample': sdri_aver_batch }, updates) SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch) print(('SDR_aver_now:', SDR_SUM.mean())) print(('SDRi_aver_now:', SDRi_SUM.mean())) total_loss += loss.cpu().item() optim.step() updates += 1 if updates % 30 == 0: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,sgm loss: %6.6f,ss loss: %6.6f,label acc: %6.6f\n" % (time.time() - start_time, epoch, updates, 0, total_loss_sgm / 30.0, total_loss_ss / 30.0, 0)) # lera.log({'label_acc':report_correct/report_total}) # writer.add_scalars('scalar/loss',{'label_acc':report_correct/report_total},updates) total_loss_sgm, total_loss_ss = 0, 0 # continue if 0 and updates % config.eval_interval == 0 and epoch > 3: #建议至少跑几个epoch再进行测试,否则模型还没学到东西,会有很多问题。 logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n" % (time.time() - start_time, epoch, updates, 0)) print(('evaluating after %d updates...\r' % updates)) original_bs = config.batch_size score = eval(epoch) # eval的时候batch_size会变成1 # print 'Orignal bs:',original_bs config.batch_size = original_bs # print 'Now bs:',config.batch_size for metric in config.metric: scores[metric].append(score[metric]) lera.log({ 'sgm_micro_f1': score[metric], }) if metric == 'micro_f1' and score[metric] >= max( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') if metric == 'hamming_loss' and score[metric] <= min( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') model.train() total_loss = 0 start_time = 0 report_total = 0 report_correct = 0 if updates > 10 and updates % config.save_interval == 1: save_model(log_path + 'TDAAv4_conditional_{}.pt'.format(updates))
def train(args): try: os.makedirs(args.save_img_path) except OSError: pass try: os.makedirs(args.weight_path) except OSError: pass lera.log_hyperparams( { "title": "hw2", "batch_size": args.bs, "epochs": args.epochs, "g_lr": args.g_lr, "d_lr": args.d_lr, "z_size": args.z_size, } ) # dataset dataloader = data_loader( args.data_path, args.imgsize, args.bs, shuffle=True ) # model generator = Generator(args.bs, args.imgsize, z_dim=args.z_size).cuda() discriminator = Discriminator(args.bs, args.imgsize).cuda() if args.pre_epochs != 0: generator.load_state_dict( torch.load( join(f"{args.weight_path}", f"generator_{args.pre_epochs}.pth") ) ) discriminator.load_state_dict( torch.load( join( f"{args.weight_path}", f"discriminator_{args.pre_epochs}.pth", ) ) ) # optimizer g_optimizer = torch.optim.Adam( filter(lambda p: p.requires_grad, generator.parameters()), lr=args.g_lr ) d_optimizer = torch.optim.SGD( filter(lambda p: p.requires_grad, discriminator.parameters()), lr=args.d_lr, ) # validate noise fixed_noise = torch.randn(9, args.z_size) fixed_noise = torch.tensor(fixed_noise).cuda() # train for epoch in range(args.pre_epochs, args.epochs): for i, data in enumerate(dataloader): discriminator.train() generator.train() # train discriminator if i % 5 == 0: d_optimizer.zero_grad() real_img = torch.tensor(data[0]).cuda() * 2 - 1 # (-1, 1) d__real, _, _ = discriminator(real_img) z = torch.randn(args.bs, args.z_size) z = torch.tensor(z).cuda() fake_img, _, _ = generator(z) d_fake, _, _ = discriminator(fake_img) # hinge loss d_loss_real = torch.nn.ReLU()(1.0 - d__real).mean() d_loss_fake = torch.nn.ReLU()(1.0 + d_fake).mean() d_loss = d_loss_real + d_loss_fake d_loss.backward() d_optimizer.step() # train generator g_optimizer.zero_grad() z = torch.randn(args.bs, args.z_size) z = torch.tensor(z).cuda() fake_img, _, _ = generator(z) g_fake, _, _ = discriminator(fake_img) # hinge loss g_loss = -g_fake.mean() g_loss.backward() g_optimizer.step() if i % 100 == 0: lera.log({"d_loss": d_loss.item(), "g_loss": g_loss.item()}) print( "[epoch:%4d/%4d %3d/%3d] \t d_loss: %0.6f \t g_loss: %0.6f" % ( epoch + 1, args.epochs, i, len(dataloader), d_loss.item(), g_loss.item(), ) ) if i % 300 == 0: validate( generator, i, epoch, args.save_img_path, fixed_noise ) torch.save( discriminator.state_dict(), f"./{args.weight_path}/discriminator_{epoch+1}.pth", ) torch.save( generator.state_dict(), f"./{args.weight_path}/generator_{epoch+1}.pth", )
predicted_maps = predicted_masks * x_input_map_multi # predicted_maps=Variable(feas_tgt) utils.bss_eval(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst='batch_output23jo') del predicted_maps, predicted_masks, x_input_map_multi SDR, SDRi = bss_test.cal('batch_output23jo/') # SDR_SUM = np.append(SDR_SUM, bss_test.cal('batch_output23jo/')) SDR_SUM = np.append(SDR_SUM, SDR) SDRi_SUM = np.append(SDRi_SUM, SDRi) print 'SDR_aver_now:', SDR_SUM.mean() print 'SDRi_aver_now:', SDRi_SUM.mean() lera.log({'SDR sample': SDR_SUM.mean()}) lera.log({'SDRi sample': SDRi_SUM.mean()}) elif batch_idx == (5000 / config.batch_size) + 1 and SDR_SUM.mean( ) > best_SDR: #only record the best SDR once. print 'Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean()) best_SDR = SDR_SUM.mean() # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR)) # ''' candidate += [ convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>']) for s in samples ] # source += raw_src reference += raw_tgt print 'samples:', samples
def eval(epoch): # config.batch_size=1 model.eval() print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1' reference, candidate, source, alignments = [], [], [], [] e = epoch test_or_valid = 'test' print('Test or valid:', test_or_valid) eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) SDR_SUM = np.array([]) SDRi_SUM = np.array([]) batch_idx = 0 global best_SDR, Var while True: print('-' * 30) eval_data = eval_data_gen.next() if eval_data == False: print('SDR_aver_eval_epoch:', SDR_SUM.mean()) print('SDRi_aver_eval_epoch:', SDRi_SUM.mean()) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_feas'])) raw_tgt = [ sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list'] ] feas_tgt = models.rank_feas( raw_tgt, eval_data['multi_spk_fea_list']) # 这里是目标的图谱 top_k = len(raw_tgt[0]) # 要保证底下这几个都是longTensor(长整数) # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。 tgt = Variable(torch.ones( top_k + 2, config.batch_size)) # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in eval_data['multi_spk_fea_list'] ])).unsqueeze(0) # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0) if config.WFM: tmp_size = feas_tgt.size() assert len(tmp_size) == 4 feas_tgt_sum = torch.sum(feas_tgt, dim=1, keepdim=True) feas_tgt_sum_square = (feas_tgt_sum * feas_tgt_sum).expand(tmp_size) feas_tgt_square = feas_tgt * feas_tgt WFM_mask = feas_tgt_square / feas_tgt_sum_square if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() if config.WFM: WFM_mask = WFM_mask.cuda() if 1 and len(opt.gpus) > 1: samples, alignment, hiddens, predicted_masks = model.module.beam_sample( src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) else: samples, alignment, hiddens, predicted_masks = model.beam_sample( src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) # ''' # expand the raw mixed-features to topk_max channel. src = src.transpose(0, 1) siz = src.size() assert len(siz) == 3 # if samples[0][-1] != dict_spk2idx['<EOS>']: # print '*'*40+'\nThe model is far from good. End the evaluation.\n'+'*'*40 # break topk_max = len(samples[0]) - 1 x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]) if config.WFM: feas_tgt = x_input_map_multi.data * WFM_mask if 0 and test_or_valid == 'valid': if 1 and len(opt.gpus) > 1: ss_loss = model.module.separation_loss( x_input_map_multi, predicted_masks, feas_tgt, ) else: ss_loss = model.separation_loss(x_input_map_multi, predicted_masks, feas_tgt) print('loss for ss,this batch:', ss_loss.cpu().item()) lera.log({ 'ss_loss_' + test_or_valid: ss_loss.cpu().item(), }) del ss_loss, hiddens # ''''' if batch_idx <= (500 / config.batch_size ): # only the former batches counts the SDR predicted_maps = predicted_masks * x_input_map_multi # predicted_maps=Variable(feas_tgt) utils.bss_eval2(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst='batch_output') del predicted_maps, predicted_masks, x_input_map_multi try: SDR_SUM, SDRi_SUM = np.append(SDR_SUM, bss_test.cal('batch_output/')) except AssertionError, wrong_info: print 'Errors in calculating the SDR', wrong_info print('SDR_aver_now:', SDR_SUM.mean()) print('SDRi_aver_now:', SDRi_SUM.mean()) lera.log({'SDR sample' + test_or_valid: SDR_SUM.mean()}) lera.log({'SDRi sample' + test_or_valid: SDRi_SUM.mean()}) # raw_input('Press any key to continue......') elif batch_idx == (500 / config.batch_size) + 1 and SDR_SUM.mean( ) > best_SDR: # only record the best SDR once. print('Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean())) best_SDR = SDR_SUM.mean()
def train(epoch): e = epoch model.train() if config.schedule: scheduler.step() print("Decaying learning rate to %g" % scheduler.get_lr()[0]) if config.is_dis: scheduler_dis.step() lera.log({ 'lr': scheduler.get_lr()[0], }) if opt.model == 'gated': model.current_epoch = epoch global e, updates, total_loss, start_time, report_total, total_loss_sgm, total_loss_ss if config.MLMSE: global Var train_data_gen = prepare_data('once', 'train') # for raw_src, src, src_len, raw_tgt, tgt, tgt_len in trainloader: while True: train_data = train_data_gen.next() if train_data == False: break #如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(train_data['mix_feas'])) # raw_tgt = [spk.keys() for spk in train_data['multi_spk_fea_list']] raw_tgt = [ sorted(spk.keys()) for spk in train_data['multi_spk_fea_list'] ] feas_tgt = models.rank_feas( raw_tgt, train_data['multi_spk_fea_list']) #这里是目标的图谱 # 要保证底下这几个都是longTensor(长整数) tgt = Variable( torch.from_numpy( np.array([[0] + [dict_spk2idx[spk] for spk in spks] + [dict_spk2idx['<EOS>']] for spks in raw_tgt], dtype=np.int))).transpose(0, 1) #转换成数字,然后前后加开始和结束符号。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor(config.batch_size).zero_() + len(train_data['multi_spk_fea_list'][0])).unsqueeze(0) if config.WFM: tmp_size = feas_tgt.size() assert len(tmp_size) == 4 feas_tgt_square = feas_tgt * feas_tgt feas_tgt_square_sum = torch.sum(feas_tgt_square, dim=1, keepdim=True).expand(tmp_size) WFM_mask = feas_tgt_square / (feas_tgt_square_sum + 1e-10) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() if config.WFM: WFM_mask = WFM_mask.cuda() try: model.zero_grad() # optim.optimizer.zero_grad() outputs, targets, multi_mask = model( src, src_len, tgt, tgt_len) #这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 print 'mask size:', multi_mask.size() if 1 and len(opt.gpus) > 1: sgm_loss, num_total, num_correct = model.module.compute_loss( outputs, targets, opt.memory) else: sgm_loss, num_total, num_correct = model.compute_loss( outputs, targets, opt.memory) print 'loss for SGM,this batch:', sgm_loss.data[0] / num_total if config.unit_norm: #outputs---[len+1,bs,2*d] assert not config.global_emb unit_dis = (outputs[0] * outputs[1]).sum(1) print 'unit_dis this batch:', unit_dis.data.cpu().numpy() unit_dis = torch.masked_select(unit_dis, unit_dis > config.unit_norm) if len(unit_dis) > 0: unit_dis = unit_dis.mean() src = src.transpose(0, 1) # expand the raw mixed-features to topk channel. siz = src.size() assert len(siz) == 3 topk = feas_tgt.size()[1] x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk, siz[1], siz[2]) multi_mask = multi_mask.transpose(0, 1) if config.WFM: feas_tgt = x_input_map_multi.data * WFM_mask if 1 and len(opt.gpus) > 1: if config.MLMSE: Var = model.module.update_var(x_input_map_multi, multi_mask, feas_tgt) lera.log_image(u'Var weight', Var.data.cpu().numpy().reshape( config.speech_fre, config.speech_fre, 1).repeat(3, 2), clip=(-1, 1)) ss_loss = model.module.separation_loss( x_input_map_multi, multi_mask, feas_tgt, Var) else: ss_loss = model.module.separation_loss( x_input_map_multi, multi_mask, feas_tgt) else: ss_loss = model.separation_loss(x_input_map_multi, multi_mask, feas_tgt) loss = sgm_loss + 5 * ss_loss if config.unit_norm and len(unit_dis): print 'unit_dis masked mean:', unit_dis.data[0] lera.log({ 'unit_dis': unit_dis.data[0], }) loss = loss + unit_dis if config.reID: print '#' * 30 + 'ReID part ' + '#' * 30 predict_multi_map = multi_mask * x_input_map_multi predict_multi_map = predict_multi_map.view( -1, mix_speech_len, speech_fre).transpose(0, 1) tgt_reID = [] for spks in raw_tgt: for spk in spks: one_spk = [dict_spk2idx['<BOS>']] + [ dict_spk2idx[spk] ] + [dict_spk2idx['<EOS>']] tgt_reID.append(one_spk) tgt_reID = Variable( torch.from_numpy(np.array( tgt_reID, dtype=np.int))).transpose(0, 1).cuda() src_len_reID = Variable( torch.LongTensor(topk * config.batch_size).zero_() + mix_speech_len).unsqueeze(0).cuda() tgt_len_reID = Variable( torch.LongTensor(topk * config.batch_size).zero_() + 1).unsqueeze(0).cuda() outputs_reID, targets_reID, multi_mask_reID = model( predict_multi_map, src_len_reID, tgt_reID, tgt_len_reID ) #这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 if 1 and len(opt.gpus) > 1: sgm_loss_reID, num_total_reID, _xx = model.module.compute_loss( outputs_reID, targets_reID, opt.memory) else: sgm_loss_reID, num_total_reID, _xx = model.compute_loss( outputs_reID, targets_reID, opt.memory) print 'loss for SGM-reID mthis batch:', sgm_loss_reID.data[ 0] / num_total_reID loss = loss + sgm_loss_reID if config.WFM: feas_tgt = x_input_map_multi.data * WFM_mask if 1 and len(opt.gpus) > 1: ss_loss_reID = model.module.separation_loss( predict_multi_map.transpose(0, 1).unsqueeze(1), multi_mask_reID.transpose(0, 1), feas_tgt.view(-1, 1, mix_speech_len, speech_fre)) else: ss_loss_reID = model.separation_loss( predict_multi_map.transpose(0, 1).unsqueeze(1), multi_mask_reID.transpose(0, 1), feas_tgt.view(-1, 1, mix_speech_len, speech_fre)) loss = loss + ss_loss_reID print '#' * 30 + 'ReID part ' + '#' * 30 # dis_loss model if config.is_dis: dis_loss = models.loss.dis_loss(config, topk, model_dis, x_input_map_multi, multi_mask, feas_tgt, func_dis) loss = loss + dis_loss # print 'dis_para',model_dis.parameters().next()[0] # print 'ss_para',model.parameters().next()[0] loss.backward() # print 'totallllllllllll loss:',loss total_loss_sgm += sgm_loss.data[0] total_loss_ss += ss_loss.data[0] lera.log({ 'sgm_loss': sgm_loss.data[0], 'ss_loss': ss_loss.data[0], }) if config.reID: lera.log({ 'reID_sgm_loss': sgm_loss_reID.data[0], 'reID_ss_loss': ss_loss_reID.data[0], }) total_loss += loss.data[0] report_total += num_total optim.step() if config.is_dis: optim_dis.step() updates += 1 if updates % 30 == 0: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,sgm loss: %6.6f,ss loss: %6.6f\n" % (time.time() - start_time, epoch, updates, loss / num_total, total_loss_sgm / 30.0, total_loss_ss / 30.0)) total_loss_sgm, total_loss_ss = 0, 0 # continue if 0 or updates % config.eval_interval == 0 and epoch > 1: logging( "time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n" % (time.time() - start_time, epoch, updates, total_loss / report_total)) print('evaluating after %d updates...\r' % updates) score = eval(epoch) for metric in config.metric: scores[metric].append(score[metric]) if metric == 'micro_f1' and score[metric] >= max( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') if metric == 'hamming_loss' and score[metric] <= min( scores[metric]): save_model(log_path + 'best_' + metric + '_checkpoint.pt') model.train() total_loss = 0 start_time = 0 report_total = 0 except RuntimeError, info: print '**************Error occurs here************:', info continue if updates % config.save_interval == 1: save_model(log_path + 'TDAA2019_{}.pt'.format(updates))
def eval(epoch): model.eval() reference, candidate, source, alignments = [], [], [], [] e = epoch test_or_valid = 'test' print 'Test or valid:', test_or_valid eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) # for raw_src, src, src_len, raw_tgt, tgt, tgt_len in validloader: SDR_SUM = np.array([]) SDRi_SUM = np.array([]) batch_idx = 0 global best_SDR, Var while True: # for ___ in range(2): print '-' * 30 eval_data = eval_data_gen.next() if eval_data == False: break #如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_feas'])) raw_tgt = [ sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list'] ] top_k = len(raw_tgt[0]) # 要保证底下这几个都是longTensor(长整数) # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。 tgt = Variable(torch.ones( top_k + 2, config.batch_size)) # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor(config.batch_size).zero_() + len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0) feas_tgt = models.rank_feas(raw_tgt, eval_data['multi_spk_fea_list']) #这里是目标的图谱 if config.WFM: tmp_size = feas_tgt.size() assert len(tmp_size) == 4 feas_tgt_square = feas_tgt * feas_tgt feas_tgt_square_sum = torch.sum(feas_tgt_square, dim=1, keepdim=True).expand(tmp_size) WFM_mask = feas_tgt_square / (feas_tgt_square_sum + 1e-10) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() if config.WFM: WFM_mask = WFM_mask.cuda() try: if 1 and len(opt.gpus) > 1: # samples, alignment = model.module.sample(src, src_len) samples, alignment, hiddens, predicted_masks = model.module.beam_sample( src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) else: samples, alignment, hiddens, predicted_masks = model.beam_sample( src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) # samples, alignment, hiddens, predicted_masks = model.beam_sample(src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) except Exception, info: print '**************Error eval occurs here************:', info continue if len(samples[0]) != 3: print 'Wrong num of mixtures, passed.' continue if config.top1: predicted_masks = torch.cat([predicted_masks, 1 - predicted_masks], 1) # ''' # expand the raw mixed-features to topk channel. src = src.transpose(0, 1) siz = src.size() assert len(siz) == 3 topk = feas_tgt.size()[1] x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk, siz[1], siz[2]) if config.WFM: feas_tgt = x_input_map_multi.data * WFM_mask if 1 and len(opt.gpus) > 1: ss_loss = model.module.separation_loss(x_input_map_multi, predicted_masks, feas_tgt, None) else: ss_loss = model.separation_loss(x_input_map_multi, predicted_masks, feas_tgt, None) print 'loss for ss,this batch:', ss_loss.data[0] lera.log({ 'ss_loss_' + test_or_valid: ss_loss.data[0], }) del ss_loss, hiddens if 0 and config.reID: print '#' * 30 + 'ReID part ' + '#' * 30 predict_multi_map = predicted_masks * x_input_map_multi predict_multi_map = predict_multi_map.view(-1, mix_speech_len, speech_fre).transpose( 0, 1) tgt_reID = Variable(torch.ones( 3, top_k * config.batch_size)) # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。 src_len_reID = Variable( torch.LongTensor(topk * config.batch_size).zero_() + mix_speech_len).unsqueeze(0).cuda() try: if 1 and len(opt.gpus) > 1: # samples, alignment = model.module.sample(src, src_len) samples, alignment, hiddens, predicted_masks = model.module.beam_sample( predict_multi_map, src_len_reID, dict_spk2idx, tgt_reID, beam_size=config.beam_size) else: samples, alignment, hiddens, predicted_masks = model.beam_sample( predict_multi_map, src_len_reID, dict_spk2idx, tgt_reID, beam_size=config.beam_size) # samples, alignment, hiddens, predicted_masks = model.beam_sample(src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size) except Exception, info: print '**************Error eval occurs here************:', info # outputs_reID, targets_reID, multi_mask_reID = model(predict_multi_map, src_len_reID, tgt_reID, tgt_len_reID) #这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 if batch_idx <= (500 / config.batch_size ): #only the former batches counts the SDR # predicted_maps=predicted_masks*x_input_map_multi predicted_maps = predicted_masks * predict_multi_map.transpose( 0, 1).unsqueeze(1) predicted_maps = predicted_maps.transpose(0, 1) # predicted_maps=Variable(feas_tgt) utils.bss_eval(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst='batch_output23jo') del predicted_maps, predicted_masks, x_input_map_multi, predict_multi_map SDR, SDRi = bss_test.cal('batch_output23jo/') # SDR_SUM = np.append(SDR_SUM, bss_test.cal('batch_output23jo/')) SDR_SUM = np.append(SDR_SUM, SDR) SDRi_SUM = np.append(SDRi_SUM, SDRi) print 'SDR_aver_now:', SDR_SUM.mean() print 'SDRi_aver_now:', SDRi_SUM.mean() lera.log({'SDR sample': SDR_SUM.mean()}) lera.log({'SDRi sample': SDRi_SUM.mean()}) elif batch_idx == (500 / config.batch_size) + 1 and SDR_SUM.mean( ) > best_SDR: #only record the best SDR once. print 'Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean()) best_SDR = SDR_SUM.mean() # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR)) print '#' * 30 + 'ReID part ' + '#' * 30
def train(config): print('Random seed: %d' % int(config.seed)) torch.manual_seed(config.seed) torch.backends.cudnn.benchmark = True dset = config.dataset if dset == 'modelnet10' or dset == 'modelnet40': dataset = ClsDataset(root=config.root, npoints=config.npoints, train=True) test_dataset = ClsDataset(root=config.root, npoints=config.npoints, train=False) else: raise NotImplementedError('Dataset not supported.') print('Selected %s' % dset) dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.batchsize, shuffle=True, num_workers=config.workers) test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=config.batchsize, shuffle=True, num_workers=config.workers) num_classes = dataset.num_classes print('number of classes: %d' % num_classes) print('train set size: %d | test set size: %d' % (len(dataset), len(test_dataset))) try: os.makedirs(config.outf) except: pass blue = lambda x: '\033[94m' + x + '\033[0m' yellow = lambda x: '\033[93m' + x + '\033[0m' red = lambda x: '\033[91m' + x + '\033[0m' classifier = PointNetCls(k=num_classes) if config.model != '': classifier.load_state_dict(torch.load(config.model)) optimizer = optim.SGD(classifier.parameters(), lr=config.lr, momentum=config.momentum) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') classifier.to(device) if config.mgpu: classifier = torch.nn.DataParallel(classifier, device_ids=config.gpuids) num_batch = len(dataset) / config.batchsize lera.log_hyperparams({ 'title': dset, 'batchsize': config.batchsize, 'epochs': config.nepochs, 'npoints': config.npoints, 'optimizer': 'SGD', 'lr': config.lr, }) for epoch in range(config.nepochs): train_acc_epoch, test_acc_epoch = [], [] for i, data in enumerate(dataloader): points, labels = data points = points.transpose(2, 1) labels = labels[:, 0] points, labels = points.to(device), labels.to(device) optimizer.zero_grad() classifier = classifier.train() pred, _ = classifier(points) pred = pred.view(-1, num_classes) # print(pred.size(), labels.size()) loss = F.nll_loss(pred, labels) loss.backward() optimizer.step() pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(labels.data).cpu().sum() train_acc = correct.item() / float(config.batchsize) print('epoch %d: %d/%d | train loss: %f | train acc: %f' % (epoch+1, i+1, num_batch+1, loss.item(), train_acc)) train_acc_epoch.append(train_acc) lera.log({ 'train loss': loss.item(), 'train acc': train_acc }) if (i+1) % 10 == 0: j, data = next(enumerate(test_dataloader, 0)) points, labels = data points = points.transpose(2, 1) labels = labels[:, 0] points, labels = points.to(device), labels.to(device) classifier = classifier.eval() with torch.no_grad(): pred, _ = classifier(points) pred = pred.view(-1, num_classes) loss = F.nll_loss(pred, labels) pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(labels.data).cpu().sum() test_acc = correct.item() / float(config.batchsize) print(blue('epoch %d: %d/%d | test loss: %f | test acc: %f') % (epoch+1, i+1, num_batch+1, loss.item(), test_acc)) test_acc_epoch.append(test_acc) lera.log({ 'test loss': loss.item(), 'test acc': test_acc }) print(yellow('epoch %d | mean train acc: %f') % (epoch+1, np.mean(train_acc_epoch))) print(red('epoch %d | mean test acc: %f') % (epoch+1, np.mean(test_acc_epoch))) lera.log({ 'train acc epoch': np.mean(train_acc_epoch), 'test acc epoch': np.mean(test_acc_epoch)}) torch.save(classifier.state_dict(), '%s/%s_model_%d.pth' % (config.outf, config.dataset, epoch))
def eval(epoch): # config.batch_size=1 model.eval() # print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1' reference, candidate, source, alignments = [], [], [], [] e = epoch test_or_valid = 'test' # test_or_valid = 'valid' print(('Test or valid:', test_or_valid)) eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) SDR_SUM = np.array([]) SDRi_SUM = np.array([]) batch_idx = 0 global best_SDR, Var # for iii in range(2000): while True: print(('-' * 30)) eval_data = next(eval_data_gen) if eval_data == False: print(('SDR_aver_eval_epoch:', SDR_SUM.mean())) print(('SDRi_aver_eval_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_feas'])) # raw_tgt = [sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']] raw_tgt = eval_data['batch_order'] feas_tgt = models.rank_feas( raw_tgt, eval_data['multi_spk_fea_list']) # 这里是目标的图谱 top_k = len(raw_tgt[0]) # 要保证底下这几个都是longTensor(长整数) # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。 # tgt = Variable(torch.from_numpy(np.array([[0,1,2,102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 # tgt = Variable(torch.from_numpy(np.array([[0,1,2,3,102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 tgt = Variable( torch.from_numpy( np.array([ list(range(top_k + 1)) + [102] for __ in range(config.batch_size) ], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 padded_mixture, mixture_lengths, padded_source = eval_data['tas_zip'] padded_mixture = torch.from_numpy(padded_mixture).float() mixture_lengths = torch.from_numpy(mixture_lengths) padded_source = torch.from_numpy(padded_source).float() padded_mixture = padded_mixture.cuda().transpose(0, 1) mixture_lengths = mixture_lengths.cuda() padded_source = padded_source.cuda() src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in eval_data['multi_spk_fea_list'] ])).unsqueeze(0) # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0) if config.WFM: tmp_size = feas_tgt.size() assert len(tmp_size) == 3 feas_tgt_square = feas_tgt * feas_tgt feas_tgt_sum_square = torch.sum(feas_tgt_square, dim=0, keepdim=True).expand(tmp_size) WFM_mask = feas_tgt_square / (feas_tgt_sum_square + 1e-15) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() if config.WFM: WFM_mask = WFM_mask.cuda() if 1 and len(opt.gpus) > 1: outputs, pred, targets, multi_mask, dec_enc_attn_list = model( src, src_len, tgt, tgt_len, dict_spk2idx, None, mix_wav=padded_mixture ) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 else: outputs, pred, targets, multi_mask, dec_enc_attn_list = model( src, src_len, tgt, tgt_len, dict_spk2idx, None, mix_wav=padded_mixture ) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 samples = list( pred.view(config.batch_size, top_k + 1, -1).max(2)[1].data.cpu().numpy()) ''' if 1 and len(opt.gpus) > 1: samples, predicted_masks = model.module.beam_sample(src, src_len, dict_spk2idx, tgt, config.beam_size,None,padded_mixture) else: samples, predicted_masks = model.beam_sample(src, src_len, dict_spk2idx, tgt, config.beam_size, None, padded_mixture) multi_mask = predicted_masks samples=[samples] # except: # continue # ''' # expand the raw mixed-features to topk_max channel. src = src.transpose(0, 1) siz = src.size() assert len(siz) == 3 # if samples[0][-1] != dict_spk2idx['<EOS>']: # print '*'*40+'\nThe model is far from good. End the evaluation.\n'+'*'*40 # break topk_max = top_k x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]) multi_mask = multi_mask.transpose(0, 1) if test_or_valid != 'test': if config.use_tas: if 1 and len(opt.gpus) > 1: ss_loss, pmt_list, max_snr_idx, *__ = model.module.separation_tas_loss( padded_mixture, multi_mask, padded_source, mixture_lengths) else: ss_loss, pmt_list, max_snr_idx, *__ = model.separation_tas_loss( padded_mixture, multi_mask, padded_source, mixture_lengths) print(('loss for ss,this batch:', ss_loss.cpu().item())) lera.log({ 'ss_loss_' + test_or_valid: ss_loss.cpu().item(), }) del ss_loss # ''''' if 1 and batch_idx <= (500 / config.batch_size ): # only the former batches counts the SDR utils.bss_eval_tas(config, multi_mask, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst=log_path + 'batch_output/') del multi_mask, x_input_map_multi try: sdr_aver_batch, sdri_aver_batch = bss_test.cal(log_path + 'batch_output/') SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch) except (AssertionError): print('Errors in calculating the SDR') print(('SDR_aver_now:', SDR_SUM.mean())) print(('SDRi_aver_now:', SDRi_SUM.mean())) lera.log({'SDR sample' + test_or_valid: SDR_SUM.mean()}) lera.log({'SDRi sample' + test_or_valid: SDRi_SUM.mean()}) writer.add_scalars('scalar/loss', {'SDR_sample_' + test_or_valid: sdr_aver_batch}, updates) # raw_input('Press any key to continue......') elif batch_idx == (200 / config.batch_size) + 1 and SDR_SUM.mean( ) > best_SDR: # only record the best SDR once. print(('Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean()))) best_SDR = SDR_SUM.mean() # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR)) ''' import matplotlib.pyplot as plt ax = plt.gca() ax.invert_yaxis() raw_src=models.rank_feas(raw_tgt,eval_data['multi_spk_fea_list']) att_idx=0 att =dec_enc_attn_list.data.cpu().numpy()[:,att_idx] # head,topk,T for spk in range(3): xx=att[:,spk] plt.matshow(xx.reshape(8,1,-1).repeat(50,1).reshape(-1,751), cmap=plt.cm.hot, vmin=0,vmax=0.05) plt.colorbar() plt.savefig(log_path+'batch_output/'+'spk_{}.png'.format(spk)) plt.matshow(xx.sum(0).reshape(1, 1, -1).repeat(50, 1).reshape(-1, 751), cmap=plt.cm.hot, vmin=0, vmax=0.05) plt.colorbar() plt.savefig(log_path + 'batch_output/' + 'spk_sum_{}.png'.format(spk)) for head in range(8): xx=att[head] plt.matshow(xx.reshape(3,1,-1).repeat(100,1).reshape(-1,751), cmap=plt.cm.hot, vmin=0,vmax=0.05) plt.colorbar() plt.savefig(log_path+'batch_output/'+'head_{}.png'.format(head)) plt.matshow(raw_src[att_idx*2+0].transpose(0,1), cmap=plt.cm.hot, vmin=0,vmax=2) plt.colorbar() plt.savefig(log_path+'batch_output/'+'source0.png') plt.matshow(raw_src[att_idx*2+1].transpose(0,1), cmap=plt.cm.hot, vmin=0,vmax=2) plt.colorbar() plt.savefig(log_path+'batch_output/'+'source1.png') # ''' candidate += [ convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>']) for s in samples ] # source += raw_src reference += raw_tgt print(('samples:', samples)) print(('can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:], reference[-1 * config.batch_size:]))) # alignments += [align for align in alignment] batch_idx += 1 result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path) print(( 'hamming_loss: %.8f | micro_f1: %.4f |recall: %.4f | precision: %.4f' % ( result['hamming_loss'], result['micro_f1'], result['micro_recall'], result['micro_precision'], ))) score = {} result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path) logging_csv([e, updates, result['hamming_loss'], \ result['micro_f1'], result['micro_precision'], result['micro_recall'],SDR_SUM.mean()]) print(('hamming_loss: %.8f | micro_f1: %.4f' % (result['hamming_loss'], result['micro_f1']))) score['hamming_loss'] = result['hamming_loss'] score['micro_f1'] = result['micro_f1'] 1 / 0 return score
def eval(epoch, test_or_valid='train'): # config.batch_size=1 global updates, model model.eval() # print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1' reference, candidate, source, alignments = [], [], [], [] e = epoch print(('Test or valid:', test_or_valid)) eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX) SDR_SUM = np.array([]) SDRi_SUM = np.array([]) batch_idx = 0 global best_SDR, Var # for iii in range(2000): while True: print(('-' * 30)) eval_data = next(eval_data_gen) if eval_data == False: print(('SDR_aver_eval_epoch:', SDR_SUM.mean())) print(('SDRi_aver_eval_epoch:', SDRi_SUM.mean())) break # 如果这个epoch的生成器没有数据了,直接进入下一个epoch src = Variable(torch.from_numpy(eval_data['mix_feas'])) # raw_tgt = [spk.keys() for spk in eval_data['multi_spk_fea_list']] # raw_tgt = [sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']] raw_tgt = eval_data['batch_order'] feas_tgt = models.rank_feas( raw_tgt, eval_data['multi_spk_wav_list']) # 这里是目标的图谱,bs*Topk,time_len padded_mixture, mixture_lengths, padded_source = eval_data['tas_zip'] padded_mixture = torch.from_numpy(padded_mixture).float() mixture_lengths = torch.from_numpy(mixture_lengths) padded_source = torch.from_numpy(padded_source).float() padded_mixture = padded_mixture.cuda().transpose(0, 1) mixture_lengths = mixture_lengths.cuda() padded_source = padded_source.cuda() # 要保证底下这几个都是longTensor(长整数) tgt_max_len = config.MAX_MIX + 2 # with bos and eos. # tgt = Variable(torch.from_numpy(np.array( # [[0] + [dict_spk2idx[spk] for spk in spks] + (tgt_max_len - len(spks) - 1) * [dict_spk2idx['<EOS>']] for # spks in raw_tgt], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 tgt = Variable( torch.from_numpy( np.array([[0, 1, 2, 102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1) # 转换成数字,然后前后加开始和结束符号。 src_len = Variable( torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0) tgt_len = Variable( torch.LongTensor([ len(one_spk) for one_spk in eval_data['multi_spk_fea_list'] ])).unsqueeze(0) if use_cuda: src = src.cuda().transpose(0, 1) tgt = tgt.cuda() src_len = src_len.cuda() tgt_len = tgt_len.cuda() feas_tgt = feas_tgt.cuda() model.zero_grad() if config.use_center_loss: center_loss.zero_grad() multi_mask, enc_attn_list = model( src, src_len, tgt, tgt_len, dict_spk2idx) # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用 multi_mask = multi_mask.transpose(0, 1) print('mask size:', multi_mask.size()) # bs,topk,T,F predicted_maps0_spectrogram = multi_mask[:, 0] * src.transpose( 0, 1) #bs,T,F predicted_maps1_spectrogram = multi_mask[:, 1] * src.transpose( 0, 1) #bs,T,F if True: # Analyze the optimal assignments predicted_spectrogram = torch.cat([ predicted_maps0_spectrogram.unsqueeze(1), predicted_maps1_spectrogram.unsqueeze(1) ], 1) feas_tgt_tmp = models.rank_feas( raw_tgt, eval_data['multi_spk_fea_list']) # 这里是目标的图谱,bs*Topk,len,fre src = src.transpose(0, 1) siz = src.size() # bs,T,F assert len(siz) == 3 # topk_max = config.MAX_MIX # 最多可能的topk个数 topk_max = 2 # 最多可能的topk个数 x_input_map_multi = torch.unsqueeze(src, 1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous() # bs,topk,T,F feas_tgt_tmp = feas_tgt_tmp.view(siz[0], -1, siz[1], siz[2]) angle_tgt = models.rank_feas( raw_tgt, eval_data['multi_spk_angle_list']).view( siz[0], -1, siz[1], siz[2]) # bs,topk,T,F angle_mix = Variable( torch.from_numpy(np.array( eval_data['mix_angle']))).unsqueeze(1).expand( siz[0], topk_max, siz[1], siz[2]).contiguous() ang = np.cos(angle_mix - angle_tgt) ang = np.clip(ang, 0, None) feas_tgt_tmp = feas_tgt_tmp.view(siz[0], -1, siz[1], siz[2]) * ang # bs,topk,T,F feas_tgt_tmp = feas_tgt_tmp.cuda() del x_input_map_multi src = src.transpose(0, 1) MSE_func = nn.MSELoss().cuda() best_perms_this_batch = [] for bs_idx in range(siz[0]): best_perms_this_sample = [] for tt in range(siz[1]): # 对每一帧 tar = feas_tgt_tmp[bs_idx, :, tt] #topk,F est = predicted_spectrogram[bs_idx, :, tt] #topk,F best_loss_mse_this_batch = -1 for idx, per in enumerate([[0, 1], [1, 0]]): if idx == 0: best_loss_mse_this_batch = MSE_func(est[per], tar) perm_this_frame = per predicted_spectrogram[bs_idx, :, tt] = est[per] else: loss = MSE_func(est[per], tar) if loss <= best_loss_mse_this_batch: best_loss_mse_this_batch = loss perm_this_frame = per predicted_spectrogram[bs_idx, :, tt] = est[per] best_perms_this_sample.append(perm_this_frame) best_perms_this_batch.append(best_perms_this_sample) print( 'different assignment ratio:', np.mean(np.min( np.array(best_perms_this_batch).sum(1) / 751, 1))) # predicted_maps0_spectrogram = predicted_spectrogram[:,0] # predicted_maps1_spectrogram = predicted_spectrogram[:,1] _mix_spec = eval_data['mix_phase'] # bs,T,F,2 angle_mix = np.angle(_mix_spec) predicted_maps0_real = predicted_maps0_spectrogram * torch.from_numpy( np.cos(angle_mix)).cuda() # e(ix) = cosx + isin x predicted_maps0_imag = predicted_maps0_spectrogram * torch.from_numpy( np.sin(angle_mix)).cuda() # e(ix) = cosx + isin x predicted_maps1_real = predicted_maps1_spectrogram * torch.from_numpy( np.cos(angle_mix)).cuda() # e(ix) = cosx + isin x predicted_maps1_imag = predicted_maps1_spectrogram * torch.from_numpy( np.sin(angle_mix)).cuda() # e(ix) = cosx + isin x stft_matrix_spk0 = torch.cat((predicted_maps0_real.unsqueeze(-1), predicted_maps0_imag.unsqueeze(-1)), 3).transpose(1, 2) # bs,F,T,2 stft_matrix_spk1 = torch.cat((predicted_maps1_real.unsqueeze(-1), predicted_maps1_imag.unsqueeze(-1)), 3).transpose(1, 2) # bs,F,T,2 wav_spk0 = models.istft_irfft(stft_matrix_spk0, length=config.MAX_LEN, hop_length=config.FRAME_SHIFT, win_length=config.FRAME_LENGTH, window='hann') wav_spk1 = models.istft_irfft(stft_matrix_spk1, length=config.MAX_LEN, hop_length=config.FRAME_SHIFT, win_length=config.FRAME_LENGTH, window='hann') predict_wav = torch.cat((wav_spk0.unsqueeze(1), wav_spk1.unsqueeze(1)), 1) # bs,topk,time_len if 1 and len(opt.gpus) > 1: ss_loss, pmt_list, max_snr_idx, *__ = model.module.separation_tas_loss( padded_mixture, predict_wav, padded_source, mixture_lengths) else: ss_loss, pmt_list, max_snr_idx, *__ = model.separation_tas_loss( padded_mixture, predict_wav, padded_source, mixture_lengths) best_pmt = [ list(pmt_list[int(mm)].data.cpu().numpy()) for mm in max_snr_idx ] print('loss for SS,this batch:', ss_loss.cpu().item()) print('best perms for this batch:', best_pmt) writer.add_scalars('scalar/loss', {'ss_loss': ss_loss.cpu().item()}, updates) lera.log({ 'ss_loss_' + test_or_valid: ss_loss.cpu().item(), }) writer.add_scalars('scalar/loss', {'ss_loss_' + test_or_valid: ss_loss.cpu().item()}, updates + batch_idx) del ss_loss # if batch_idx>10: # break if False: #this part is to test the checkpoints sequencially. batch_idx += 1 if batch_idx % 100 == 0: updates = updates + 1000 opt.restore = '/data1/shijing_data/2020-02-14-04:58:17/Transformer_PIT_{}.pt'.format( updates) print('loading checkpoint...\n', opt.restore) checkpoints = torch.load(opt.restore) model.module.load_state_dict(checkpoints['model']) break continue # ''''' if 1 and batch_idx <= (500 / config.batch_size): utils.bss_eval_tas(config, predict_wav, eval_data['multi_spk_fea_list'], raw_tgt, eval_data, dst=log_path + 'batch_output') sdr_aver_batch, snri_aver_batch = bss_test.cal(log_path + 'batch_output/') lera.log({'SDR sample': sdr_aver_batch}) lera.log({'SI-SNRi sample': snri_aver_batch}) writer.add_scalars('scalar/loss', { 'SDR_sample': sdr_aver_batch, 'SDRi_sample': snri_aver_batch }, updates) SDR_SUM = np.append(SDR_SUM, sdr_aver_batch) SDRi_SUM = np.append(SDRi_SUM, snri_aver_batch) print(('SDR_aver_now:', SDR_SUM.mean())) print(('SNRi_aver_now:', SDRi_SUM.mean())) batch_idx += 1 if batch_idx > 100: break result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path) print(( 'hamming_loss: %.8f | micro_f1: %.4f |recall: %.4f | precision: %.4f' % ( result['hamming_loss'], result['micro_f1'], result['micro_recall'], result['micro_precision'], )))