Esempio n. 1
0
    async def get_shaped_timeseries(self, query: ShapeQuery) -> ModelResult:
        logger.debug(
            "\n--->>> Shape Query Called successfully on %s Model!! <<<---" %
            self.name)
        logger.debug("Spatial Component is: \n%s" % str(query.spatial))
        logger.debug("Temporal Component is: \n%s" % str(query.temporal))

        logger.debug(
            "\nDerived LAT1: %s\nDerived LON1: %s\nDerived LAT2: %s\nDerived LON2: %s"
            % query.spatial.expanded(0.05))

        sr = await (self.get_shaped_resultcube(query))

        logger.debug(sr)
        logger.debug(sr.data)
        # Check our param exists in the shaped result set
        if len(sr.data) > 0:

            logger.debug(">> Crack a beer we got there!! <<")

            dps = [
                self.get_datapoint_for_param(
                    b=sr.isel(time=t),
                    param=self.outputs["readings"]["prefix"])
                for t in range(0, len(sr["time"]))
            ]
            return ModelResult(model_name=self.name, data_points=dps)
        else:
            return ModelResult(model_name=self.name, data_points=[])
Esempio n. 2
0
    async def get_shaped_timeseries(self, query: ShapeQuery) -> ModelResult:
        logger.debug(
            "\n--->>> Shape Query Called successfully on %s Model!! <<<---" % self.name)

        # logger.debug("Spatial Component is: \n%s" % str(query.spatial))
        # logger.debug("Temporal Component is: \n%s" % str(query.temporal))
        #
        # logger.debug("\nDerived LAT1: %s\nDerived LON1: %s\nDerived LAT2: %s\nDerived LON2: %s" %
        #              query.spatial.expanded(0.05))

        sr = await (self.get_shaped_resultcube(query))
        sr.load()
        dps = []

        for r in sr['time']:
            t = r['time'].values
            o = sr.sel(time=t)
            p = self.outputs['readings']['prefix']
            df = o[p].to_dataframe()
            df = df[p]
            # TODO - This is a quick hack to massage the datetime format into a markup suitable for D3 & ngx-charts!
            m = df.mean()
            dps.append(DataPoint(observation_time=str(t).replace('.000000000', '.000Z'),
                                 value=m,
                                 mean=m,
                                 minimum=df.min(),
                                 maximum=df.max(),
                                 deviation=0))

        asyncio.sleep(1)

        return ModelResult(model_name=self.name, data_points=dps)
Esempio n. 3
0
 async def get_timeseries(self, query: SpatioTemporalQuery) -> ModelResult:
     """
     Essentially just time slicing the resultcube.
     DataPoint actually handles the creation of values from stats.
     :param query:
     :return:
     """
     logger.debug(
         "--->>> SpatioTemporal Query Called on %s Model!! <<<---" % self.name)
     sr = await (self.get_resultcube(query))
     sr.load()
     asyncio.sleep(1)
     dps = [self.get_datapoint_for_param(b=sr.isel(time=t), param="DFMC")
            for t in range(0, len(sr["time"]))]
     return ModelResult(model_name=self.name, data_points=dps)
    def subscribe(self, observer):
        if dev.DEBUG:
            dps = []
            for i in range(3):
                dps.append(
                    DataPoint(observation_time=dt.date(2018, 5, 17),
                              value=i,
                              mean=i,
                              minimum=i,
                              maximum=i,
                              deviation=0))
                observer.on_next(
                    ModelResult(model_name='test', data_points=dps))
            observer.on_completed()
        else:
            dps = []

        pass
    def subscribe(self, observer):
        if dev.DEBUG:
            logger.debug("Got subscription. Building response.")

            for model in self.models:
                dps = []
                logger.debug('Building dummy response for model: %s' %
                             model.name)
                for j in range(30):
                    dps.append(DummyResults.dummy_single(j))
                    observer.on_next(
                        ModelResult(model_name=model.name, data_points=dps))
            observer.on_completed()
        else:
            dps = []
            for model in self.models:
                model.subscribe(observer)

            # rx.Observable.merge()
        pass
Esempio n. 6
0
    async def get_shaped_timeseries(self, query: ShapeQuery) -> ModelResult:
        logger.debug(
            "\n--->>> Shape Query Called successfully on %s Model!! <<<---" % self.name)
        logger.debug("Spatial Component is: \n%s" % str(query.spatial))
        logger.debug("Temporal Component is: \n%s" % str(query.temporal))
        logger.debug("\nDerived LAT1: %s\nDerived LON1: %s\nDerived LAT2: %s\nDerived LON2: %s" %
                     query.spatial.expanded(0.05))

        dps = []
        try:
            sr = await (self.get_shaped_resultcube(query))
            sr.load()

            # Values in AWRA are in range 0..1
            # Normalise to between 0-100%
            # sr[self.outputs["readings"]["prefix"]] *= 100

            if dev.DEBUG:
                logger.debug("Shaped ResultCube is: \n%s" % sr)

            for r in sr['time']:
                t = r['time'].values
                o = sr.sel(time=t)
                p = self.outputs['readings']['prefix']
                df = o[p].to_dataframe()
                df = df[p]
                # TODO - This is a quick hack to massage the datetime format into a markup suitable for D3 & ngx-charts!
                m = df.median()
                dps.append(DataPoint(observation_time=str(t).replace('.000000000', '.000Z'),
                                     value=m,
                                     mean=df.mean(),
                                     minimum=df.min(),
                                     maximum=df.max(),
                                     deviation=0))
        except FileNotFoundError:
            logger.exception('Files not found for date range.')

        asyncio.sleep(1)
        return ModelResult(model_name=self.name, data_points=dps)
Esempio n. 7
0
    async def get_shaped_timeseries(self, query: ShapeQuery) -> ModelResult:
        logger.debug(
            "\n--->>> Shape Query Called successfully on %s Model!! <<<---" %
            self.name)
        logger.debug("Spatial Component is: \n%s" % str(query.spatial))
        logger.debug("Temporal Component is: \n%s" % str(query.temporal))
        logger.debug(
            "\nDerived LAT1: %s\nDerived LON1: %s\nDerived LAT2: %s\nDerived LON2: %s"
            % query.spatial.expanded(0.05))

        sr = await (self.get_shaped_resultcube(query))
        sr.load()

        # Values in AWRA are in range 0..1
        # Normalise to between 0-100%
        sr[self.outputs["readings"]["prefix"]] *= 100

        dps = [
            self.get_datapoint_for_param(
                b=sr.sel(time=t), param=self.outputs["readings"]["prefix"])
            for t in sr["time"]
        ]
        asyncio.sleep(1)
        return ModelResult(model_name=self.name, data_points=dps)
Esempio n. 8
0
 def get_timeseries(self, query: SpatioTemporalQuery) -> ModelResult:
     # MAGIC HAPPENS HERE
     # An array of mockup DataPoints for testing only
     dr = DummyResults()
     dps = dr.dummy_data(query)
     return ModelResult(self.name, dps)