def _get_test_and_train_set(input_dir, min_num_images_per_label, split_ratio=0.7): dataset = get_dataset(input_dir) dataset = filter_dataset(dataset, min_images_per_label=min_num_images_per_label) train_set, test_set = split_dataset(dataset, split_ratio=split_ratio) return train_set, test_set
def _get_test_and_train_set(input_dir, min_num_images_per_label, split_ratio=0.7): """ Load train and test dataset. Classes with < :param min_num_images_per_label will be filtered out. :param input_dir: :param min_num_images_per_label: :param split_ratio: :return: """ dataset = get_dataset(input_dir) dataset = filter_dataset(dataset, min_images_per_label=min_num_images_per_label) train_set, test_set = split_dataset(dataset, split_ratio=split_ratio) return train_set, test_set