Esempio n. 1
0
    def __init__(self, input_shape, filter_sizes, init, strides=[1,1,1,1], padding='SAME', activation=None, bias=0., use_bias=True, name=None, load=None, train=True):
        self.input_shape = input_shape
        self.filter_sizes = filter_sizes
        self.batch_size, self.h, self.w, self.fin = self.input_shape
        self.fh, self.fw, self.fin, self.fout = self.filter_sizes
        self.init = init
        self.strides = strides
        _, self.sh, self.sw, _ = self.strides
        self.padding = padding
        self.activation = Linear() if activation == None else activation
        self.use_bias = use_bias
        self.name = name
        self.train_flag = train

        if load:
            print ("Loading Weights: " + self.name)
            weight_dict = np.load(load, encoding='latin1', allow_pickle=True).item()
            filters = weight_dict[self.name]
            bias = weight_dict[self.name + '_bias']
        else:
            filters = init_filters(size=self.filter_sizes, init=self.init)
            bias = np.ones(shape=self.fout) * bias

        self.filters = tf.Variable(filters, dtype=tf.float32)
        self.bias = tf.Variable(bias, dtype=tf.float32)
Esempio n. 2
0
    def __init__(self, input_shape, num_classes, name=None):
        self.num_classes = num_classes
        self.input_shape = input_shape
        self.name = name
        '''
        if load:
            weight_dict = np.load(load).item()
            self.B = tf.cast(tf.Variable(weight_dict[self.name]), tf.float32)
        elif std is not None:
            b = np.random.normal(loc=0., scale=std, size=(self.num_classes, self.output_size))
            self.B = tf.cast(tf.Variable(b), tf.float32)
        else:
            # var = 1. / self.output_size
            # std = np.sqrt(var)
            # b = np.random.normal(loc=0., scale=std, size=(self.num_classes, self.output_size))

            b = FeedbackMatrix(size=(self.num_classes, self.output_size), sparse=self.sparse, rank=self.rank)
            self.B = tf.cast(tf.Variable(b), tf.float32) 
        '''

        # THE PROBLEM WAS NEVER THE BIAS ... IT WAS THE FACT WE WERNT DIVIDING BY N

        # l0 = FullyConnected(input_shape=input_shape, size=self.input_shape, init='alexnet', activation=Relu(), bias=1., name=self.name)
        self.l0 = FullyConnected(input_shape=input_shape,
                                 size=self.num_classes,
                                 init='alexnet',
                                 activation=Linear(),
                                 bias=0.,
                                 name=self.name)
Esempio n. 3
0
    def __init__(self,
                 input_sizes,
                 filter_sizes,
                 strides,
                 padding,
                 init=None,
                 alpha=0.,
                 activation=None,
                 bias=0.,
                 name=None,
                 load=None,
                 train=True):
        self.input_sizes = input_sizes
        self.filter_sizes = filter_sizes
        self.batch_size, self.h, self.w, self.fin = self.input_sizes
        self.fh, self.fw, self.fin, self.fout = self.filter_sizes

        bias = np.ones(shape=self.fout) * bias

        self.strides = strides
        self.padding = padding
        self.alpha = alpha
        self.activation = Linear() if activation == None else activation
        self.name = name
        self._train = train

        if load:
            print("Loading Weights: " + self.name)
            weight_dict = np.load(load, encoding='latin1').item()
            filters = weight_dict[self.name]
            bias = weight_dict[self.name + '_bias']
        else:
            if init == "zero":
                filters = np.zeros(shape=self.filter_sizes)
            elif init == "sqrt_fan_in":
                sqrt_fan_in = math.sqrt(self.h * self.w * self.fin)
                filters = np.random.uniform(low=-1.0 / sqrt_fan_in,
                                            high=1.0 / sqrt_fan_in,
                                            size=self.filter_sizes)
            elif init == "alexnet":
                filters = np.random.normal(loc=0.0,
                                           scale=0.01,
                                           size=self.filter_sizes)
            else:
                # https://www.tensorflow.org/api_docs/python/tf/glorot_uniform_initializer
                # can verify we did this right ...
                fan_in = self.fh * self.fw * self.fin
                fan_out = self.fout
                lim = np.sqrt(6. / (fan_in + fan_out))
                filters = np.random.uniform(low=-lim,
                                            high=lim,
                                            size=self.filter_sizes)

        self.filters = tf.Variable(filters, dtype=tf.float32)
        self.bias = tf.Variable(bias, dtype=tf.float32)
Esempio n. 4
0
    def __init__(self,
                 input_shape,
                 size,
                 init=None,
                 activation=None,
                 bias=0.,
                 alpha=0.,
                 name=None,
                 load=None,
                 train=True):

        self.input_size = input_shape
        self.output_size = size
        self.size = [self.input_size, self.output_size]

        bias = np.ones(shape=self.output_size) * bias

        self.alpha = alpha
        self.activation = Linear() if activation == None else activation
        self.name = name
        self._train = train

        if load:
            print("Loading Weights: " + self.name)
            weight_dict = np.load(load).item()
            weights = weight_dict[self.name]
            bias = weight_dict[self.name + '_bias']
        else:
            if init == "zero":
                weights = np.zeros(shape=self.size)
            elif init == "sqrt_fan_in":
                sqrt_fan_in = math.sqrt(self.input_size)
                weights = np.random.uniform(low=-1.0 / sqrt_fan_in,
                                            high=1.0 / sqrt_fan_in,
                                            size=self.size)
            elif init == "alexnet":
                weights = np.random.normal(loc=0.0, scale=0.01, size=self.size)
            else:
                # https://www.tensorflow.org/api_docs/python/tf/glorot_uniform_initializer
                # can verify we did this right ...
                fan_in = self.input_size
                fan_out = self.output_size
                lim = np.sqrt(6. / (fan_in + fan_out))
                weights = np.random.uniform(low=-lim, high=lim, size=self.size)

        self.weights = tf.Variable(weights, dtype=tf.float32)
        self.bias = tf.Variable(bias, dtype=tf.float32)
Esempio n. 5
0
    def __init__(self, input_shape, pool_shape, num_classes, name=None):
        self.input_shape = input_shape
        self.batch_size, self.h, self.w, self.fin = self.input_shape
        self.pool_shape = pool_shape
        self.num_classes = num_classes
        self.name = name

        l1 = AvgPool(size=self.input_shape,
                     ksize=self.pool_shape,
                     strides=self.pool_shape,
                     padding='SAME')

        l2_input_shape = l1.output_shape()
        l2 = ConvToFullyConnected(input_shape=l2_input_shape)

        l3_input_shape = l2.output_shape()
        l3 = FullyConnected(input_shape=l3_input_shape,
                            size=self.num_classes,
                            init='alexnet',
                            activation=Linear(),
                            bias=0.,
                            name=self.name)

        self.B = Model(layers=[l1, l2, l3])
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--epochs', type=int, default=200)
    parser.add_argument('--batch_size', type=int, default=128)
    parser.add_argument('--alpha', type=float, default=1e-4)
    parser.add_argument('--beta', type=float,
                        default=1e-4)  #feedback weights, B, learning rate
    parser.add_argument('--sigma', type=float,
                        default=0.1)  #node pert standard deviation
    parser.add_argument('--l2', type=float, default=0.)
    parser.add_argument('--decay', type=float, default=1.)
    parser.add_argument('--eps', type=float, default=1e-5)
    parser.add_argument('--dropout', type=float, default=0.5)
    parser.add_argument('--act', type=str, default='tanh')
    parser.add_argument('--bias', type=float, default=0.1)
    parser.add_argument('--gpu', type=int, default=1)
    parser.add_argument('--dfa', type=int, default=1)
    parser.add_argument('--feedbacklearning', type=int,
                        default=1)  #Whether or not to learn feedback weights
    parser.add_argument('--sparse', type=int, default=0)
    parser.add_argument('--rank', type=int, default=0)
    parser.add_argument('--init', type=str, default="sqrt_fan_in")
    parser.add_argument('--opt', type=str, default="adam")
    parser.add_argument('--N', type=int, default=50)
    parser.add_argument('--save', type=int, default=0)
    parser.add_argument('--name', type=str, default="cifar10_conv_np")
    parser.add_argument('--load', type=str, default=None)
    args = parser.parse_args()

    if args.gpu >= 0:
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)

    cifar10 = tf.keras.datasets.cifar10.load_data()

    ##############################################

    EPOCHS = args.epochs
    TRAIN_EXAMPLES = 50000
    TEST_EXAMPLES = 10000
    BATCH_SIZE = args.batch_size

    if args.act == 'tanh':
        act = Tanh()
    elif args.act == 'relu':
        act = Relu()
    else:
        assert (False)

    train_fc = True
    if args.load:
        train_conv = False
    else:
        train_conv = True

    weights_fc = None
    weights_conv = args.load

    #Setup the parameters
    attrs = ['sigma', 'alpha', 'beta']
    log_scale = [True, True, True]
    ranges = [[-4, -1], [-6, -3], [-6, -3]]
    params = []
    isnan = []
    train_accs = []
    test_accs = []

    #Here we run a bunch of times for different parameters...
    for idx in range(args.N):

        #Choose some random parameters...
        param = set_random_hyperparameters(args, attrs, ranges, log_scale)
        params.append(param)

        if args.feedbacklearning == 0:
            args.beta = 0

        #Tell me the params....
        print('Alpha, beta, sigma are: ', args.alpha, args.beta, args.sigma)

        tf.set_random_seed(0)
        tf.reset_default_graph()

        batch_size = tf.placeholder(tf.int32, shape=())
        dropout_rate = tf.placeholder(tf.float32, shape=())
        learning_rate = tf.placeholder(tf.float32, shape=())
        sigma = tf.placeholder(tf.float32, shape=(), name="Sigma")
        X = tf.placeholder(tf.float32, [None, 32, 32, 3])
        X = tf.map_fn(lambda frame: tf.image.per_image_standardization(frame),
                      X)
        Y = tf.placeholder(tf.float32, [None, 10])

        l0 = Convolution(input_sizes=[batch_size, 32, 32, 3],
                         filter_sizes=[5, 5, 3, 96],
                         num_classes=10,
                         init_filters=args.init,
                         strides=[1, 1, 1, 1],
                         padding="SAME",
                         alpha=learning_rate,
                         activation=act,
                         bias=args.bias,
                         last_layer=False,
                         name='conv1',
                         load=weights_conv,
                         train=train_conv)
        l1 = MaxPool(size=[batch_size, 32, 32, 96],
                     ksize=[1, 3, 3, 1],
                     strides=[1, 2, 2, 1],
                     padding="SAME")

        #Add perturbation to activity to get output to train feedback weights with
        l2p = NodePert(size=[batch_size, 16, 16, 96], sigma=sigma)
        l2 = FeedbackConv(size=[batch_size, 16, 16, 96],
                          num_classes=10,
                          sparse=args.sparse,
                          rank=args.rank,
                          name='conv1_fb')

        l3 = Convolution(input_sizes=[batch_size, 16, 16, 96],
                         filter_sizes=[5, 5, 96, 128],
                         num_classes=10,
                         init_filters=args.init,
                         strides=[1, 1, 1, 1],
                         padding="SAME",
                         alpha=learning_rate,
                         activation=act,
                         bias=args.bias,
                         last_layer=False,
                         name='conv2',
                         load=weights_conv,
                         train=train_conv)
        l4 = MaxPool(size=[batch_size, 16, 16, 128],
                     ksize=[1, 3, 3, 1],
                     strides=[1, 2, 2, 1],
                     padding="SAME")
        l5p = NodePert(size=[batch_size, 8, 8, 128], sigma=sigma)
        l5 = FeedbackConv(size=[batch_size, 8, 8, 128],
                          num_classes=10,
                          sparse=args.sparse,
                          rank=args.rank,
                          name='conv2_fb')

        l6 = Convolution(input_sizes=[batch_size, 8, 8, 128],
                         filter_sizes=[5, 5, 128, 256],
                         num_classes=10,
                         init_filters=args.init,
                         strides=[1, 1, 1, 1],
                         padding="SAME",
                         alpha=learning_rate,
                         activation=act,
                         bias=args.bias,
                         last_layer=False,
                         name='conv3',
                         load=weights_conv,
                         train=train_conv)
        l7 = MaxPool(size=[batch_size, 8, 8, 256],
                     ksize=[1, 3, 3, 1],
                     strides=[1, 2, 2, 1],
                     padding="SAME")
        l8p = NodePert(size=[batch_size, 4, 4, 256], sigma=sigma)
        l8 = FeedbackConv(size=[batch_size, 4, 4, 256],
                          num_classes=10,
                          sparse=args.sparse,
                          rank=args.rank,
                          name='conv3_fb')

        l9 = ConvToFullyConnected(shape=[4, 4, 256])

        l10p = NodePert(size=[batch_size, 4 * 4 * 256], sigma=sigma)
        l10 = FullyConnected(size=[4 * 4 * 256, 2048],
                             num_classes=10,
                             init_weights=args.init,
                             alpha=learning_rate,
                             activation=act,
                             bias=args.bias,
                             last_layer=False,
                             name='fc1',
                             load=weights_fc,
                             train=train_fc)
        l11 = Dropout(rate=dropout_rate)
        l12 = FeedbackFC(size=[4 * 4 * 256, 2048],
                         num_classes=10,
                         sparse=args.sparse,
                         rank=args.rank,
                         name='fc1_fb')

        l13p = NodePert(size=[batch_size, 2048], sigma=sigma)
        l13 = FullyConnected(size=[2048, 2048],
                             num_classes=10,
                             init_weights=args.init,
                             alpha=learning_rate,
                             activation=act,
                             bias=args.bias,
                             last_layer=False,
                             name='fc2',
                             load=weights_fc,
                             train=train_fc)
        l14 = Dropout(rate=dropout_rate)
        l15 = FeedbackFC(size=[2048, 2048],
                         num_classes=10,
                         sparse=args.sparse,
                         rank=args.rank,
                         name='fc2_fb')

        l16 = FullyConnected(size=[2048, 10],
                             num_classes=10,
                             init_weights=args.init,
                             alpha=learning_rate,
                             activation=Linear(),
                             bias=args.bias,
                             last_layer=True,
                             name='fc3',
                             load=weights_fc,
                             train=train_fc)

        ##############################################

        model = Model(layers=[
            l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14,
            l15, l16
        ])
        model_perturbed = Model(layers=[
            l0, l1, l2p, l2, l3, l4, l5p, l5, l6, l7, l8p, l8, l9, l10p, l10,
            l11, l12, l13p, l13, l14, l15, l16
        ])

        predict = model.predict(X=X)
        predict_perturbed = model_perturbed.predict(X=X)

        #######
        #Pairs of perturbations and feedback weights
        #feedbackpairs = [[l2p, l2], [l5p, l5], [l8p, l8], [l10p, l12], [l13p, l15]]

        #Test one at a time... this works, so it must be l10p, 12 pair that fails
        feedbackpairs = [[l2p, l2], [l5p, l5], [l8p, l8], [l13p, l15]]

        #Get noise, feedback matrices, and loss function and unperturbed loss function, to make update rule for feedback weights
        loss = tf.reduce_sum(tf.pow(tf.nn.softmax(predict) - Y, 2), 1) / 2
        loss_perturbed = tf.reduce_sum(
            tf.pow(tf.nn.softmax(predict_perturbed) - Y, 2), 1) / 2

        train_B = []
        E = tf.nn.softmax(predict) - Y
        for idx, (noise, feedback) in enumerate(feedbackpairs):
            print(idx, batch_size, feedback.output_size)
            xi = tf.reshape(noise.get_noise(),
                            (batch_size, feedback.output_size))
            B = feedback.B
            lambd = tf.matmul(
                tf.diag(loss_perturbed - loss) / args.sigma / args.sigma, xi)
            np_error = tf.matmul(E, B) - lambd
            grad_B = tf.matmul(tf.transpose(E), np_error)
            new_B = B.assign(B - args.beta * grad_B)
            train_B.append(new_B)
        #######

        weights = model.get_weights()

        if args.opt == "adam" or args.opt == "rms" or args.opt == "decay":
            if args.dfa:
                grads_and_vars = model.dfa_gvs(X=X, Y=Y)
            else:
                grads_and_vars = model.gvs(X=X, Y=Y)

            if args.opt == "adam":
                train = tf.train.AdamOptimizer(
                    learning_rate=learning_rate,
                    beta1=0.9,
                    beta2=0.999,
                    epsilon=args.eps).apply_gradients(
                        grads_and_vars=grads_and_vars)
            elif args.opt == "rms":
                train = tf.train.RMSPropOptimizer(
                    learning_rate=learning_rate, decay=0.99,
                    epsilon=args.eps).apply_gradients(
                        grads_and_vars=grads_and_vars)
            elif args.opt == "decay":
                train = tf.train.GradientDescentOptimizer(
                    learning_rate=learning_rate).apply_gradients(
                        grads_and_vars=grads_and_vars)
            else:
                assert (False)

        else:
            if args.dfa:
                train = model.dfa(X=X, Y=Y)
            else:
                train = model.train(X=X, Y=Y)

        correct = tf.equal(tf.argmax(predict, 1), tf.argmax(Y, 1))
        total_correct = tf.reduce_sum(tf.cast(correct, tf.float32))

        ##############################################

        sess = tf.InteractiveSession()
        tf.global_variables_initializer().run()
        tf.local_variables_initializer().run()

        (x_train, y_train), (x_test, y_test) = cifar10

        x_train = x_train.reshape(TRAIN_EXAMPLES, 32, 32, 3)
        y_train = keras.utils.to_categorical(y_train, 10)

        x_test = x_test.reshape(TEST_EXAMPLES, 32, 32, 3)
        y_test = keras.utils.to_categorical(y_test, 10)

        ##############################################

        filename = args.name + '.results'
        f = open(filename, "w")
        f.write(filename + "\n")
        f.write("total params: " + str(model.num_params()) + "\n")
        f.close()

        ##############################################

        for ii in range(EPOCHS):
            if args.opt == 'decay' or args.opt == 'gd':
                decay = np.power(args.decay, ii)
                lr = args.alpha * decay
            else:
                lr = args.alpha

            print(ii)

            #############################

            _count = 0
            _total_correct = 0

            #The training loop... here we add something to also update the feedback weights with the node pert
            for jj in range(int(TRAIN_EXAMPLES / BATCH_SIZE)):
                xs = x_train[jj * BATCH_SIZE:(jj + 1) * BATCH_SIZE]
                ys = y_train[jj * BATCH_SIZE:(jj + 1) * BATCH_SIZE]
                _correct, _ = sess.run(
                    [total_correct, train],
                    feed_dict={
                        sigma: 0.0,
                        batch_size: BATCH_SIZE,
                        dropout_rate: args.dropout,
                        learning_rate: lr,
                        X: xs,
                        Y: ys
                    })

                #Add step to update B......
                _ = sess.run(
                    [train_B],
                    feed_dict={
                        sigma: args.sigma,
                        batch_size: BATCH_SIZE,
                        dropout_rate: args.dropout,
                        learning_rate: lr,
                        X: xs,
                        Y: ys
                    })

                _total_correct += _correct
                _count += BATCH_SIZE

            train_acc = 1.0 * _total_correct / _count
            train_accs.append(train_acc)

            #############################

            _count = 0
            _total_correct = 0

            for jj in range(int(TEST_EXAMPLES / BATCH_SIZE)):
                xs = x_test[jj * BATCH_SIZE:(jj + 1) * BATCH_SIZE]
                ys = y_test[jj * BATCH_SIZE:(jj + 1) * BATCH_SIZE]
                _correct = sess.run(total_correct,
                                    feed_dict={
                                        sigma: 0.0,
                                        batch_size: BATCH_SIZE,
                                        dropout_rate: 0.0,
                                        learning_rate: 0.0,
                                        X: xs,
                                        Y: ys
                                    })

                _total_correct += _correct
                _count += BATCH_SIZE

            test_acc = 1.0 * _total_correct / _count
            test_accs.append(test_acc)

            isnan.append(None)

            #try:
            #    trainer.train()
            #except ValueError:
            #    print("Method fails to converge for these parameters")
            #    isnan[n,m] = 1

            #Save results...
            #############################

            print("train acc: %f test acc: %f" % (train_acc, test_acc))

            f = open(filename, "a")
            f.write("train acc: %f test acc: %f\n" % (train_acc, test_acc))
            f.close()

        #Save params after each run
        fn = "./cifar10_conv_np_hyperparam_search_varalpha_septsearch_2_dfa_%d_fblearning_%d.npz" % (
            args.dfa, args.feedbacklearning)
        to_save = {
            'attr': attrs,
            'params': params,
            'train_accs': train_accs,
            'test_accs': test_accs,
            'isnan': isnan
        }
        pickle.dump(to_save, open(fn, "wb"))
Esempio n. 7
0
l8p = NodePert(size=[batch_size, 4, 4, 256], sigma = sigma)
l8 = FeedbackConv(size=[batch_size, 4, 4, 256], num_classes=10, sparse=args.sparse, rank=args.rank, name='conv3_fb')

l9 = ConvToFullyConnected(shape=[4, 4, 256])

l10p = NodePert(size=[batch_size, 4*4*256], sigma = sigma)
l10 = FullyConnected(size=[4*4*256, 2048], num_classes=10, init_weights=args.init, alpha=learning_rate, activation=act, bias=args.bias, last_layer=False, name='fc1', load=weights_fc, train=train_fc)
l11 = Dropout(rate=dropout_rate)
l12 = FeedbackFC(size=[4*4*256, 2048], num_classes=10, sparse=args.sparse, rank=args.rank, name='fc1_fb')

l13p = NodePert(size=[batch_size, 2048], sigma = sigma)
l13 = FullyConnected(size=[2048, 2048], num_classes=10, init_weights=args.init, alpha=learning_rate, activation=act, bias=args.bias, last_layer=False, name='fc2', load=weights_fc, train=train_fc)
l14 = Dropout(rate=dropout_rate)
l15 = FeedbackFC(size=[2048, 2048], num_classes=10, sparse=args.sparse, rank=args.rank, name='fc2_fb')

l16 = FullyConnected(size=[2048, 10], num_classes=10, init_weights=args.init, alpha=learning_rate, activation=Linear(), bias=args.bias, last_layer=True, name='fc3', load=weights_fc, train=train_fc)

##############################################

model = Model(layers=[l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16])
model_perturbed = Model(layers=[l0, l1, l2p, l2, l3, l4, l5p, l5, l6, l7, l8p, l8, l9, l10p, l10, l11, l12, l13p, l13, l14, l15, l16])

predict = model.predict(X=X)
predict_perturbed = model_perturbed.predict(X=X)

#######
#Pairs of perturbations and feedback weights
#feedbackpairs = [[l2p, l2], [l5p, l5], [l8p, l8], [l10p, l12], [l13p, l15]]

#Test one at a time... this works, so it must be l10p, 12 pair that fails
feedbackpairs = [[l2p, l2], [l5p, l5], [l8p, l8], [l13p, l15]]
Esempio n. 8
0
                    activation=act,
                    bias=args.bias,
                    last_layer=False,
                    name="fc3")
l8 = Dropout(rate=dropout_rate)
l9 = FeedbackFC(size=[1000, 1000],
                num_classes=10,
                sparse=args.sparse,
                rank=args.rank,
                name="fc3_fb")

l10 = FullyConnected(size=[1000, 10],
                     num_classes=10,
                     init_weights=args.init,
                     alpha=learning_rate,
                     activation=Linear(),
                     bias=args.bias,
                     last_layer=True,
                     name="fc4")

model = Model(layers=[l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10])

##############################################

predict = model.predict(X=X)

weights = model.get_weights()

if args.opt == "adam" or args.opt == "rms" or args.opt == "decay":
    if args.dfa:
        grads_and_vars = model.dfa_gvs(X=X, Y=Y)
Esempio n. 9
0
tf.set_random_seed(0)
tf.reset_default_graph()

batch_size = tf.placeholder(tf.int32, shape=())
dropout_rate = tf.placeholder(tf.float32, shape=())
learning_rate = tf.placeholder(tf.float32, shape=())

X = tf.placeholder(tf.float32, [None, 784])
Y = tf.placeholder(tf.float32, [None, 10])

l0 = FullyConnected(size=[784, 400], num_classes=10, init_weights=args.init, alpha=learning_rate, activation=Tanh(), bias=args.bias, l2=args.l2, last_layer=False, name="fc1")
l1 = Dropout(rate=dropout_rate)
l2 = FeedbackFC(size=[784, 400], num_classes=10, sparse=args.sparse, rank=args.rank, name="fc1_fb")

l3 = FullyConnected(size=[400, 10], num_classes=10, init_weights=args.init, alpha=learning_rate, activation=Linear(), bias=args.bias, l2=args.l2, last_layer=True, name="fc2")

model = Model(layers=[l0, l1, l2, l3])

##############################################

predict = model.predict(X=X)

weights = model.get_weights()

if args.opt == "adam" or args.opt == "rms" or args.opt == "decay":
    if args.dfa:
        grads_and_vars = model.dfa_gvs(X=X, Y=Y)
    else:
        grads_and_vars = model.gvs(X=X, Y=Y)