Esempio n. 1
0
 def forward(self, fpn_outputs, anchor_coord, anchor_feat, num_proposals, generate_proposal=True):
   # Forward network for each layer of the pyramid.
   rpn_class_logits, rpn_probs, rpn_bbox, rpn_rotation = zip(
       *[self._forward_stride(p) for p in fpn_outputs])
   if generate_proposal:
     # Get bounding boxes from detection output.
     anchors = [(c, torch.from_numpy(utils.normalize_boxes(f.numpy(), self.config.max_ptc_size)))
                for c, f in zip(anchor_coord, anchor_feat)]
     rpn_rois, rpn_rois_rotation, rpn_scores, rpn2anchor_maps = self.get_proposal(
         rpn_probs, rpn_bbox, rpn_rotation, anchors, num_proposals)
   else:
     rpn_rois, rpn_rois_rotation, rpn_scores, rpn2anchor_maps = None, None, None, None
   return (rpn_class_logits, rpn_bbox, rpn_rotation, rpn_rois, rpn_rois_rotation, rpn_scores,
           rpn2anchor_maps)
Esempio n. 2
0
 def forward(self, fpn_outputs, anchors, num_proposals, generate_proposal=True):
   # Forward network for each layer of the pyramid.
   rpn_outputs = [torch.cat(o, 1) for o in zip(*[self._forward_stride(p) for p in fpn_outputs])]
   if self.is_rotation_bbox:
     rpn_class_logits, rpn_probs, rpn_bbox, rpn_rotation = rpn_outputs
   else:
     rpn_class_logits, rpn_probs, rpn_bbox = rpn_outputs
     rpn_rotation = None
   if generate_proposal:
     # Get bounding boxes from detection output.
     anchors = utils.normalize_boxes(anchors, self.config.max_ptc_size)
     rpn_rois, rpn_rois_rotation, rpn_scores = self.get_proposal(
         rpn_probs, rpn_bbox, rpn_rotation, anchors, num_proposals)
   else:
     rpn_rois, rpn_rois_rotation, rpn_scores = None, None, None
   return rpn_class_logits, rpn_bbox, rpn_rotation, rpn_rois, rpn_rois_rotation, rpn_scores
Esempio n. 3
0
 def visualize_groundtruth(self, datum, iteration):
   coords = datum['coords'].numpy()
   batch_size = coords[:, 0].max() + 1
   output_path = pathlib.Path(self.config.visualize_path)
   output_path.mkdir(exist_ok=True)
   for i in range(batch_size):
     # Visualize ground-truth positive anchors.
     anchors_gt = datum['anchors'][torch.where(datum['rpn_match'].cpu() == 1)[1]]
     anchors_gt_ptc = pc_utils.visualize_bboxes(anchors_gt)
     anchors_gt_ply_dest = output_path / ('visualize_%04d_anchors_gt.ply' % iteration)
     pc_utils.save_point_cloud(anchors_gt_ptc, anchors_gt_ply_dest)
     # Visualize center location of all ground-truth anchors.
     anchors_all = np.unique((datum['anchors'][:, 3:] + datum['anchors'][:, :3]) / 2, axis=0)
     anchors_all_ply_dest = output_path / ('visualize_%04d_all_anchors_centers.ply' % iteration)
     pc_utils.save_point_cloud(anchors_all, anchors_all_ply_dest)
     # Visualize ground-truth positive anchors.
     if datum.get('bboxes_rotations') is None:
       bboxes_gt = pc_utils.visualize_bboxes(datum['bboxes_coords'][i], datum['bboxes_cls'][i])
     else:
       bboxes_gt = np.hstack((datum['bboxes_coords'][i], datum['bboxes_rotations'][i][:, None]))
       bboxes_gt = pc_utils.visualize_bboxes(bboxes_gt, datum['bboxes_cls'][i],
                                             bbox_param='xyzxyzr')
     bboxes_gt_ply_dest = output_path / ('visualize_%04d_bboxes_gt.ply' % iteration)
     pc_utils.save_point_cloud(bboxes_gt, bboxes_gt_ply_dest)
     # Visualize reconstructed ground-truth rpn targets.
     rpn_bbox_anchors = datum['anchors'][(datum['rpn_match'].flatten() == 1).cpu().numpy()]
     rpn_bbox_anchors = detection_utils.normalize_boxes(rpn_bbox_anchors, self.config.max_ptc_size)
     rpn_bbox_target = datum['rpn_bbox'].reshape(-1, 6)
     rpn_bbox_mask = ~torch.all(rpn_bbox_target == 0, 1)
     rpn_bbox_target = rpn_bbox_target[rpn_bbox_mask].cpu().numpy()
     rpn_bbox_target *= np.reshape(self.config.rpn_bbox_std, (1, len(self.config.rpn_bbox_std)))
     rpn_bbox_target = detection_utils.apply_box_deltas(torch.from_numpy(rpn_bbox_anchors),
                                                        torch.from_numpy(rpn_bbox_target),
                                                        self.config.normalize_bbox)
     rpn_bbox_target = detection_utils.unnormalize_boxes(rpn_bbox_target.numpy(),
                                                         self.config.max_ptc_size)
     if datum.get('rpn_rotation') is None:
       bboxes_gt_recon = pc_utils.visualize_bboxes(rpn_bbox_target)
     else:
       rpn_rot_target = datum['rpn_rotation'][i][rpn_bbox_mask].cpu().numpy()
       bboxes_gt_recon = np.hstack((rpn_bbox_target, rpn_rot_target[:, None]))
       bboxes_gt_recon = pc_utils.visualize_bboxes(bboxes_gt_recon, bbox_param='xyzxyzr')
     bboxes_gt_recon_ply_dest = output_path / ('visualize_%04d_bboxes_gt_recon.ply' % iteration)
     pc_utils.save_point_cloud(bboxes_gt_recon, bboxes_gt_recon_ply_dest)
Esempio n. 4
0
  def __call__(self, list_data):
    coords, feats, point_labels, bboxes = list(zip(*list_data))
    coords_batch, feats_batch, labels_batch = [], [], []
    bboxes_coords, bboxes_rotations, bboxes_cls = [], [], []

    batch_num_points = 0
    last_batch_id = 0
    for batch_id in range(len(list_data)):
      num_points = coords[batch_id].shape[0]
      batch_num_points += num_points
      if self.limit_numpoints and batch_num_points > self.limit_numpoints:
        num_full_points = sum(len(c) for c in coords)
        num_full_batch_size = len(coords)
        logging.warning(
            f'\t\tCannot fit {num_full_points} points into {self.limit_numpoints} points '
            f'limit. Truncating batch size at {batch_id} out of {num_full_batch_size} with '
            f'{batch_num_points - num_points}.'
        )
        break
      coords_batch.append(coords[batch_id])
      feats_batch.append(feats[batch_id])
      labels_batch.append(point_labels[batch_id])
      bboxes_cls.append(bboxes[batch_id][:, -1].astype(int))
      if self.is_rotation_bbox:
        bboxes_coords.append(bboxes[batch_id][:, :-2])
        bboxes_rotations.append(bboxes[batch_id][:, -2])
      else:
        bboxes_coords.append(bboxes[batch_id][:, :-1])
      last_batch_id = batch_id

    # Concatenate all lists
    bboxes_rotations = bboxes_rotations if self.is_rotation_bbox else None
    coords_sbatch, feats_sbatch, labels_sbatch = \
        ME.utils.sparse_collate(coords_batch, feats_batch, labels_batch)
    datum = {
        'coords': coords_sbatch,
        'input': feats_sbatch.float(),
        'target': labels_sbatch,
        'bboxes_coords': bboxes_coords,
        'bboxes_rotations': bboxes_rotations,
        'bboxes_cls': bboxes_cls,
        'last_batch_id': last_batch_id
    }

    # Precompute detection targets
    if self.config.preload_anchor_data:
      backbone_shapes = self._get_backbone_shapes(datum['coords'])
      anchors, anchor_coords = detection_utils.generate_pyramid_anchors(
          self.config.rpn_anchor_scales, self.anchor_ratios, backbone_shapes,
          self.config.rpn_strides, get_negative_anchors=self.config.load_sparse_gt_data)
      bboxes_normalized = [detection_utils.normalize_boxes(b, self.config.max_ptc_size)
                           for b in bboxes_coords]
      datum.update({
          'backbone_shapes': backbone_shapes,
          'bboxes_normalized': bboxes_normalized,
      })

      if self.config.load_sparse_gt_data:
        anchor_match_coords, sparse_anchor_centers, sparse_anchor_coords, sparse_rpn_match, \
            sparse_rpn_bbox, sparse_rpn_rotation, sparse_rpn_cls = self._get_sparse_rpn_targets(
                coords_batch, anchors, anchor_coords, bboxes_coords, bboxes_rotations, bboxes_cls,
                self.config.rpn_strides)
        datum.update({
            'anchor_match_coords': anchor_match_coords,
            'sparse_anchor_centers': sparse_anchor_centers,
            'sparse_anchor_coords': sparse_anchor_coords,
            'sparse_rpn_match': sparse_rpn_match,
            'sparse_rpn_bbox': sparse_rpn_bbox,
            'sparse_rpn_rotation': sparse_rpn_rotation,
            'sparse_rpn_cls': sparse_rpn_cls,
        })
      else:
        rpn_match, rpn_bbox, rpn_rotation, rpn_cls = self._get_rpn_targets(
            anchors, bboxes_coords, bboxes_rotations, bboxes_cls)
        datum.update({
            'anchors': anchors,
            'rpn_match': rpn_match,
            'rpn_bbox': rpn_bbox,
            'rpn_rotation': rpn_rotation,
            'rpn_cls': rpn_cls,
        })
    return datum
Esempio n. 5
0
 def get_proposal(self, lrpn_probs, lrpn_sem, ldeltas, lrotation, num_proposals):
   with torch.no_grad():
     assert len(lrpn_probs) == len(lrpn_sem) == len(ldeltas) == len(lrotation)
     rpn_cls = []
     rpn_scores = []
     rpn_return_scores = []
     rpn_boxes = []
     rpn_rotations = []
     rpn_batch_idxs = []
     for rpn_probs, rpn_semantic, deltas, rotation, anchor_size in zip(
             lrpn_probs, lrpn_sem, ldeltas, lrotation, self.anchor_sizes):
       if rpn_probs is None:
         continue
       num_anchors = rpn_probs.F.shape[1] / 2
       assert rpn_probs.coords_key == deltas.coords_key
       assert num_anchors == deltas.F.shape[1] / 6
       rpn_batch_idxs.append(deltas.coords[:, 0])
       rpn_semantic = rpn_semantic.reshape(-1, self.num_class)
       rpn_semantic_prob, rpn_semantic_cls = rpn_semantic.max(1)
       rpn_cls.append(rpn_semantic_cls)
       rpn_prob = rpn_probs.F.reshape(-1, 2)[:, 1]
       if self.config.detection_nms_score == 'obj':
         rpn_score = rpn_prob
       elif self.config.detection_nms_score == 'sem':
         rpn_score = rpn_semantic_prob
       elif self.config.detection_nms_score == 'objsem':
         rpn_score = rpn_prob * rpn_semantic_prob
       if self.config.detection_ap_score == 'obj':
         ap_score = rpn_prob
       elif self.config.detection_ap_score == 'sem':
         ap_score = rpn_semantic_prob
       elif self.config.detection_ap_score == 'objsem':
         ap_score = rpn_prob * rpn_semantic_prob
       rpn_scores.append(rpn_score)
       rpn_return_scores.append(ap_score)
       rpn_bbox_std = torch.from_numpy(np.expand_dims(self.config.rpn_bbox_std, 0)).to(deltas.F)
       anchor_centers = deltas.coords[:, 1:] + deltas.tensor_stride[0] / 2
       anchor_center = np.tile(anchor_centers, (1, int(num_anchors)))
       anchors = np.hstack(((anchor_center - anchor_size).reshape(-1, 3),
                            (anchor_center + anchor_size).reshape(-1, 3)))
       deltas = deltas.F.reshape(-1, 6) * rpn_bbox_std
       anchors = torch.from_numpy(utils.normalize_boxes(anchors, self.config.max_ptc_size))
       rpn_boxes.append(
           utils.apply_box_deltas(anchors.to(deltas), deltas, self.config.normalize_bbox))
       if rotation is not None:
         num_rot_output = self.rotation_criterion.NUM_OUTPUT
         assert rpn_probs.coords_key == rotation.coords_key
         assert rpn_probs.F.shape[1] / 2 == rotation.F.shape[1] / num_rot_output
         rpn_rotations.append(
             self.rotation_criterion.pred(rotation.F.reshape(-1, num_rot_output)))
     if not rpn_scores:
       return None, None, None
     all_scores = torch.cat(rpn_scores)
     all_return_scores = torch.cat(rpn_return_scores)
     all_cls = torch.cat(rpn_cls)
     all_boxes = torch.cat(rpn_boxes)
     all_batch_idxs = torch.cat(rpn_batch_idxs).repeat_interleave(int(num_anchors))
     rotations = None
     if rpn_rotations:
       all_rotations = torch.cat(rpn_rotations)
       rotations = []
     boxes = []
     scores = []
     return_scores = []
     classes = []
     for i in range(all_batch_idxs.max().item() + 1):
       batch_mask = all_batch_idxs == i
       batch_scores = all_scores[batch_mask]
       confidence_mask = batch_scores > self.config.rpn_pre_nms_min_confidence
       pre_nms_limit = min(self.config.rpn_pre_nms_limit, confidence_mask.sum())
       batch_scores, ix = torch.topk(batch_scores[confidence_mask], pre_nms_limit, sorted=True)
       scores.append(batch_scores)
       return_scores.append(all_return_scores[batch_mask][confidence_mask][ix])
       boxes.append(all_boxes[batch_mask][confidence_mask][ix])
       classes.append(all_cls[batch_mask][confidence_mask][ix])
       if rotations is not None:
         rotations.append(all_rotations[batch_mask][confidence_mask][ix])
     rpn_proposal, rotation, rpn_scores = self.batch_non_maximum_suppression(
         boxes, rotations, classes, scores, return_scores, num_proposals)
     return rpn_proposal, rotation, rpn_scores