Esempio n. 1
0
    def __train(self):
        print 'training neural network ...'
        funcUtil.recordStatus(self.__id, 'training neural network ...')
        train_s_time = time.time()

        try:
            self.__bpNN.train()
        except Exception, ex:
            print ex
            funcUtil.write_log('train')
            self.__success = False
Esempio n. 2
0
    def __preProcess(self):
        print 'pre processing data ...'
        funcUtil.recordStatus(self.__id, 'pre processing data ...')
        process_s_time = time.time()

        try:
            self.__bpNN.preProcess()
        except Exception, ex:
            print ex
            funcUtil.write_log('preProcess')
            self.__success = False
Esempio n. 3
0
    def __load(self):
        print 'loading data ...'
        funcUtil.recordStatus(self.__id, 'loading data ...')
        load_s_time = time.time()

        try:
            o_load = load.Load(self.__dataConfig)  # 加载数据 并 进行数据预处理
            data_training, data_val, data_test, data_last = o_load.run()
            self.__bpNN.loadData(data_training, data_val, data_test, data_last)
        except Exception, ex:
            print ex
            funcUtil.write_log('load')
            self.__success = False
Esempio n. 4
0
    def __recordResult(self):
        if not self.__record:
            return

        print 'recording result ...'
        funcUtil.recordStatus(self.__id, 'recording result ...')
        record_s_time = time.time()

        try:
            result = {
                'training_record': self.__bpNN.trainingRecord,
                'test_record': self.__bpNN.testRecord,
                'original_data': self.__bpNN.originalData,
                'pred': self.__bpNN.pred,
            }
            result = json.dumps(result)

            with open(funcUtil.getTmpPath(self.__id, 'result.tmp'), 'w') as f:
                f.write(result)
        except Exception, ex:
            print ex
            funcUtil.write_log('recordResult')
Esempio n. 5
0
# -*- coding: utf-8 -*-
import sys, os
sys.path.append(os.path.split(os.path.abspath(os.path.curdir))[0])

import master
import config.network as configNetwork
import config.load as configLoad
import lib.funcUtil as funcUtil

# unique_id = sys.argv[1]
unique_id = 'test'

funcUtil.killRunningProcess(unique_id)
funcUtil.recordPid(unique_id)

config = {
    'data': configLoad.config(),  # 读取 加载数据的配置
    'network': configNetwork.config(),  # 读取 神经网络的配置
    'id': unique_id,
    'record': True,
}

o_master = master.Master(config)
o_master.run()

funcUtil.recordStatus(unique_id, 'done')
funcUtil.recordPid(unique_id, 'done')

import time
print 'done ' + str(time.time())
Esempio n. 6
0
        load_s_time = time.time()

        try:
            o_load = load.Load(self.__dataConfig)  # 加载数据 并 进行数据预处理
            data_training, data_val, data_test, data_last = o_load.run()
            self.__bpNN.loadData(data_training, data_val, data_test, data_last)
        except Exception, ex:
            print ex
            funcUtil.write_log('load')
            self.__success = False

        load_e_time = time.time()
        print 'finish loading'
        print 'load data use time: %s\n' % str(load_e_time - load_s_time)
        funcUtil.recordStatus(
            self.__id,
            'finish loading (use time: %s)' % str(load_e_time - load_s_time))

    def __preProcess(self):
        print 'pre processing data ...'
        funcUtil.recordStatus(self.__id, 'pre processing data ...')
        process_s_time = time.time()

        try:
            self.__bpNN.preProcess()
        except Exception, ex:
            print ex
            funcUtil.write_log('preProcess')
            self.__success = False

        process_e_time = time.time()
Esempio n. 7
0
    print 'process %d finish' % process_id
    return [master_config, run_result]

if __name__ == '__main__':
    process_num = 30

    import sys
    # unique_id = sys.argv[1]
    unique_id = 'test'

    s_time = time.time()

    funcUtil.killRunningProcess(unique_id)
    funcUtil.recordPid(unique_id)

    funcUtil.recordStatus(unique_id, 'Start ...')

    p = Pool()

    result_list = []
    for i in range(process_num):
        result_list.append(p.apply_async(run, args=(i, process_num, unique_id)))

    print 'Waiting for all subprocesses done...'
    p.close()
    p.join()
    print 'All subprocesses done.'

    result_list = map(lambda x: x.get(), result_list)

    def compare_accuracy(a, b):