Esempio n. 1
0
    def __getitem__(self, item):

        if self.preloaded_images is not None:
            im = self.preloaded_images[item]
        else:
            im = imread(self.images[item])
        lb = []
        f = self.frame_name(item)
        obj_ids = self.start_frames.get(f, [])

        if len(obj_ids) > 0:
            lb = imread(self.anno_path / (f + ".png"))
            if self.merge_objects:
                lb = (lb != 0).byte()
                obj_ids = [1]
            else:
                # Suppress labels of objects not in their start frame (primarily for YouTubeVOS)
                suppressed_obj_ids = list(
                    set(lb.unique().tolist()) - set([0] + obj_ids))
                for obj_id in suppressed_obj_ids:
                    lb[lb == obj_id] = 0

        return im, lb, obj_ids
Esempio n. 2
0
    def __init__(self,
                 path,
                 year: str,
                 split: str,
                 restart: str = None,
                 sequences: (list, tuple) = None,
                 all_annotations=False):

        self.dset_path = Path(path).expanduser().resolve()
        if not self.dset_path.exists():
            print("Dataset directory '%s' not found." % path)
            quit(1)

        self.jpeg_path = self.dset_path / "JPEGImages" / "480p"
        self.anno_path = self.dset_path / "Annotations" / "480p"
        imset = self.dset_path / "ImageSets" / year / (split + ".txt")
        self.sequences = [s.strip() for s in sorted(open(imset).readlines())]
        self.name = "dv%s%s" % (year, split)
        self.year = year
        self.all_annotations = all_annotations

        if sequences is not None:
            assert set(sequences).issubset(self.sequences)
            self.sequences = list(
                sorted(set(self.sequences).intersection(sequences)))
        if restart is not None:
            assert restart in self.sequences
            self.sequences = self.sequences[self.sequences.index(restart):]

        self.start_frames = dict()
        for seq in self.sequences:
            f0 = "00000"  # In DAVIS, all objects appear in the first frame
            obj_ids = torch.unique(imread(self.anno_path / seq /
                                          (f0 + ".png"))).tolist()
            self.start_frames[seq] = {
                obj_id: f0
                for obj_id in sorted(obj_ids) if obj_id != 0
            }
Esempio n. 3
0
from lib.model import FaceDetectionRegressor
from lib.image import imread, draw_rectangle, imwrite
from lib.utils import merge

# FaceDetectionRegressor
model = FaceDetectionRegressor()

# load weights
model.load_weights('./models')

from os import listdir, path
test_dir = './test/'
result_dir = './results/'
for file in listdir(test_dir):
    image = imread(path.join(test_dir, file))

    predictions = model.predict(image, threshold=.2)
    predictions = merge(predictions)

    print(file, 'detect', len(predictions), 'faces')

    for prediction in predictions:
        draw_rectangle(image, (int(prediction[0]), int(prediction[1])),
                       (int(prediction[2]), int(prediction[3])))
    imwrite(path.join(result_dir, file), image)
Esempio n. 4
0
def evaluate_dataset(dset, results_path, measure='J', to_file=True):

    results = odict()
    dset_scores = []
    dset_decay = []
    dset_recall = []

    if to_file:
        f = open(results_path / ("evaluation-%s.txt" % measure), "w")

    def _print(msg):
        print(msg)
        if to_file:
            print(msg, file=f)
            f.flush()

    for j, sequence in enumerate(dset):

        # Load all frames

        annotations = odict()
        segmentations = odict()
        for file in sequence.annos:
            lb = imread(file)
            annotations[file.stem] = (
                lb != 0).byte() if sequence.merge_objects else lb
            segmentations[file.stem] = imread(results_path / sequence.name /
                                              file.name)

        # Find object ids and starting frames

        object_info = dict()
        for obj_id in sequence.obj_ids:
            for frame, obj_ids in sequence.start_frames.items():
                if obj_id in obj_ids:
                    assert obj_id not in object_info  # Only one start frame per object
                    object_info[obj_id] = frame
        assert 0 not in object_info  # Because a background object would be weird

        # Evaluate

        n_seqs = len(dset)
        n_objs = len(object_info)
        seq_name = sequence.name

        _print("%d/%d: %s: %d object%s" %
               (j + 1, n_seqs, seq_name, n_objs, "s" if n_objs > 1 else ""))
        r = utils.evaluate_sequence(segmentations,
                                    annotations,
                                    object_info,
                                    measure=measure)
        results[seq_name] = r

        # Print scores, per frame and object, ignoring NaNs

        per_obj_score = []  # Per-object accuracies, averaged over the sequence
        per_frame_score = []  # Per-frame accuracies, averaged over the objects

        for obj_id, score in r['raw'].items():
            per_frame_score.append(score)
            s = utils.mean(score)  # Sequence average for one object
            per_obj_score.append(s)
            if n_objs > 1:
                _print("joint {obj}: acc {score:.3f} ┊{apf}┊".format(
                    obj=obj_id, score=s, apf=text_bargraph(score)))

        # Print mean object score per frame and final score

        dset_decay.extend(r['decay'])
        dset_recall.extend(r['recall'])
        dset_scores.extend(per_obj_score)

        seq_score = utils.mean(per_obj_score)  # Final score
        seq_mean_score = utils.nanmean(np.array(per_frame_score),
                                       axis=0)  # Mean object score per frame

        # Print sequence results

        _print("final  : acc {seq:.3f} ({dset:.3f}) ┊{apf}┊".format(
            seq=seq_score,
            dset=np.mean(dset_scores),
            apf=text_bargraph(seq_mean_score)))

    _print("%s: %.3f, recall: %.3f, decay: %.3f" %
           (measure, utils.mean(dset_scores), utils.mean(dset_recall),
            utils.mean(dset_decay)))
    if to_file:
        f.close()
Esempio n. 5
0
 def preload(self, device):
     """ Preload all images and upload them to the GPU. """
     self.preloaded_images = [imread(f).to(device) for f in self.images]