Esempio n. 1
0
    def __init__(self,
                 hidden_dims,
                 input_dim,
                 layer_type="concat",
                 nonlinearity="softplus"):
        super(AmortizedBiasODEnet, self).__init__()
        base_layer = {
            "ignore": diffeq_layers.IgnoreLinear,
            "hyper": diffeq_layers.HyperLinear,
            "squash": diffeq_layers.SquashLinear,
            "concat": diffeq_layers.ConcatLinear,
            "concat_v2": diffeq_layers.ConcatLinear_v2,
            "concatsquash": diffeq_layers.ConcatSquashLinear,
            "blend": diffeq_layers.BlendLinear,
            "concatcoord": diffeq_layers.ConcatLinear,
        }[layer_type]
        self.input_dim = input_dim

        # build layers and add them
        layers = []
        activation_fns = []
        hidden_shape = input_dim
        for dim_out in hidden_dims:
            layer = base_layer(hidden_shape, dim_out)
            layers.append(layer)
            activation_fns.append(NONLINEARITIES[nonlinearity])
            hidden_shape = dim_out

        self.layers = nn.ModuleList(layers)
        self.activation_fns = nn.ModuleList(activation_fns[:-1])
 def _make_layer(self, block, hidden, planes, num_blocks, stride):
     strides = [stride] + [1] * (num_blocks - 1)
     layers = []
     for stride in strides:
         layers.append(block(self.in_planes, hidden, planes, stride))
         self.in_planes = planes * block.expansion
     return nn.Sequential(*layers)
def create_net_with_time(n_inputs,
                         n_outputs,
                         n_layers=1,
                         n_units=100,
                         layer_type="concat",
                         nonlinear="tanh"):

    base_layer = LAYER[layer_type]
    base_activate = NONLINEARITIES[nonlinear]
    layers = [base_layer(n_inputs, n_units)]
    for i in range(n_layers):
        layers.append(base_activate())
        layers.append(base_layer(n_units, n_units))

    layers.append(base_activate())
    layers.append(nn.Linear(n_units, n_outputs))
    return nn.ModuleList(layers)