Esempio n. 1
0
    def optimize_strategy(self, img, gt):
        gen_imgs = self.model(img)
        mse_loss = get_mse_loss_function()
        loss = mse_loss(gen_imgs, gt)

        # BP
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return gen_imgs, loss
Esempio n. 2
0
    def optimize_strategy(self,img,gt):
        gen_imgs = self.model(img)
        mse_loss = get_mse_loss_function()
        loss = mse_loss(gen_imgs,gt)

        #BP
        self.optimizer.zero_grad()
        loss.backward()
        #jinxing tidu caijian  yinwei lossNaN
        nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=20, norm_type=2)
        self.optimizer.step()

        return gen_imgs,loss
Esempio n. 3
0
    def optimize_multi_strategy(self, img_0, gt_0, img_1, gt_1, img_2, gt_2):

        gen_imgs = self.model(img_0, img_1, img_2)
        mse_loss = get_mse_loss_function()
        loss_0 = mse_loss(gen_imgs[2], gt_0)  #256
        loss_1 = mse_loss(gen_imgs[1], gt_1)  #128
        loss_2 = mse_loss(gen_imgs[0], gt_2)  #64
        loss = loss_0 + loss_1 + loss_2

        #BP
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return gen_imgs, loss
    def train(self, args, train_dataloader, test_dataloader, start_epoch,
              end_epoch):

        patch = (1, args.img_height // (2**args.n_D_layers * 4),
                 args.img_width // (2**args.n_D_layers * 4))
        fake_img_buffer = ReplayBuffer()
        fake_gt_buffer = ReplayBuffer()

        writer = SummaryWriter(log_dir='{}'.format(args.log_dir),
                               comment='train_loss')
        print("======== begin train model ========")
        print('data_size:', len(train_dataloader))

        best_loss = 3
        os.makedirs(args.results_gen_model_dir, exist_ok=True)
        os.makedirs(args.results_dis_model_dir, exist_ok=True)
        os.makedirs(args.results_img_dir, exist_ok=True)
        os.makedirs(args.results_gt_dir, exist_ok=True)
        os.makedirs(args.log_dir, exist_ok=True)

        for epoch in range(start_epoch, end_epoch):
            for i, batch in enumerate(train_dataloader):
                if torch.cuda.is_available():
                    img = Variable(batch['X'].type(torch.FloatTensor).cuda())
                    gt = Variable(batch['Y'].type(torch.FloatTensor).cuda())

                else:
                    img = Variable(batch['X'].type(torch.FloatTensor))
                    gt = Variable(batch['Y'].type(torch.FloatTensor))

                valid = Variable(torch.FloatTensor(
                    np.ones((img.size(0), *patch))).cuda(),
                                 requires_grad=False)
                fake = Variable(torch.FloatTensor(
                    np.zeros((img.size(0), *patch))).cuda(),
                                requires_grad=False)

                ##### Train Generator #######
                self.optimizer_G.zero_grad()
                # identity loss
                identity_loss = get_l1_loss_function()
                loss_id_img = identity_loss(self.gen_BA(img), img)
                loss_id_gt = identity_loss(self.gen_AB(gt), gt)
                loss_identity = (loss_id_gt + loss_id_img) / 2

                # GAN loss
                fake_gt = self.gen_AB(img)
                pred_fake = self.dis_B(fake_gt)
                gan_loss = get_mse_loss_function()
                loss_GAN_img_gt = gan_loss(pred_fake, valid)

                fake_img = self.gen_BA(gt)
                pred_fake = self.dis_B(fake_img)
                loss_GAN_gt_img = gan_loss(pred_fake, valid)

                loss_GAN = (loss_GAN_img_gt + loss_GAN_gt_img) / 2

                #Cycle loss
                recov_img = self.gen_BA(fake_gt)
                cycle_loss = get_l1_loss_function()
                loss_cycle_img = cycle_loss(recov_img, img)

                recov_gt = self.gen_BA(fake_img)
                loss_cycle_gt = cycle_loss(recov_gt, gt)

                loss_cycle = (loss_cycle_gt + loss_cycle_img) / 2

                # Tota loss
                loss_G = loss_GAN + args.lambda_id * loss_identity + args.lambda_cyc * loss_cycle

                loss_G.backward()
                self.optimizer_G.step()
                batches_done = epoch * len(train_dataloader) + i

                ####### Train Discriminator A #######
                self.optimizer_D_A.zero_grad()
                pred_real = self.dis_A(img)
                loss_real = gan_loss(pred_real, valid)
                fake_img = fake_img_buffer.push_and_pop(fake_img)
                pred_fake = self.dis_A(fake_img.detach())
                loss_fake = gan_loss(pred_fake, fake)

                loss_D_img = (loss_real + loss_fake) / 2
                loss_D_img.backward()
                self.optimizer_D_A.step()

                ####### Train Discriminator B #######
                self.optimizer_D_B.zero_grad()
                pred_real = self.dis_B(gt)
                loss_real = gan_loss(pred_real, valid)
                fake_gt = fake_gt_buffer.push_and_pop(fake_gt)
                pred_fake = self.dis_B(fake_gt.detach())
                loss_fake = gan_loss(pred_fake, fake)

                loss_D_gt = (loss_real + loss_fake) / 2
                loss_D_gt.backward()
                self.optimizer_D_B.step()

                loss_D = (loss_D_img + loss_D_gt) / 2

                writer.add_scalars('{}_train_loss'.format(args.model.arch), {
                    'loss_G': loss_G.data.cpu(),
                    'loss_D': loss_D.data.cpu()
                }, batches_done)

                f = open(os.path.join(args.log_dir, 'log.txt'), 'a+')
                info = 'epoch:' + str(epoch) + ' batches_done:' + str(batches_done) + ' loss_GAN:' + str(loss_GAN.data.cpu())\
                       + ' loss_identity:' + str(loss_identity.data.cpu())+' loss_identity:'+ str(loss_identity) + ' loss_cycle:'\
                       + str(loss_cycle.data.cpu()) + ' loss_G:' + str(loss_G.data.cpu())+ ' loss_D_gt:' + str(loss_D_gt.data.cpu()) + ' loss_D_img:' + str(loss_D_img.data.cpu())
                f.write(info + '\n')

                ########## save best result ##############

                if loss_G.data.cpu() < best_loss:
                    best_loss = loss_G.data.cpu()
                    torch.save(
                        self.gen_AB.state_dict(), args.results_gen_model_dir +
                        '/%d-%d_gen_AB_best_model.pkl' % (epoch, batches_done))
                    torch.save(
                        self.gen_BA.state_dict(), args.results_gen_model_dir +
                        '/%d-%d_gen_BA_best_model.pkl' % (epoch, batches_done))
                    torch.save(
                        self.dis_A.state_dict(), args.results_dis_model_dir +
                        '/%d-%d_dis_A_best_model.pkl' % (epoch, batches_done))
                    torch.save(
                        self.dis_B.state_dict(), args.results_dis_model_dir +
                        '/%d-%d_dis_B_best_model.pkl' % (epoch, batches_done))
                    save_image(fake_gt,
                               '%s/%s-%s.bmp' %
                               (args.results_gt_dir, epoch, batches_done),
                               nrow=4,
                               normalize=True)
                    save_image(fake_img,
                               '%s/%s-%s.bmp' %
                               (args.results_img_dir, epoch, batches_done),
                               nrow=4,
                               normalize=True)

                if i % args.interval == 0:
                    print('[epoch %d/%d] [batch %d/%d] [loss: %f]' %
                          (epoch, end_epoch, batches_done,
                           (end_epoch * len(train_dataloader)), loss_G.item()))

            if epoch % args.interval == 0:
                torch.save(
                    self.gen_AB.state_dict(), args.results_gen_model_dir +
                    '/%d-%d_gen_AB.pkl' % (epoch, batches_done))
                torch.save(
                    self.gen_BA.state_dict(), args.results_gen_model_dir +
                    '/%d-%d_gen_BA.pkl' % (epoch, batches_done))
                torch.save(
                    self.dis_A.state_dict(), args.results_dis_model_dir +
                    '/%d-%d_dis_A.pkl' % (epoch, batches_done))
                torch.save(
                    self.dis_B.state_dict(), args.results_dis_model_dir +
                    '/%d-%d_dis_B.pkl' % (epoch, batches_done))
                save_image(fake_gt,
                           '%s/%s-%s.bmp' %
                           (args.results_gt_dir, epoch, batches_done),
                           nrow=4,
                           normalize=True)
                save_image(fake_img,
                           '%s/%s-%s.bmp' %
                           (args.results_img_dir, epoch, batches_done),
                           nrow=4,
                           normalize=True)

        f.close()
        writer.close()
Esempio n. 5
0
    def train(self,args,train_dataloader,test_dataloader,start_epoch,end_epoch):

        logreport = LogReport(log_dir = args.config.log_dir)
        testreport = TestReport(log_dir=args.config.out_dir)

        print("======== begin train model ========")

        for epoch in range(start_epoch,end_epoch):
            for i ,(img,gt,name) in enumerate(train_dataloader):
                if torch.cuda.is_available():
                    img = Variable(img.cuda())
                    gt = Variable(gt.cuda())
                else:
                    img = Variable(img)
                    gt = Variable(gt)
                fake_gt = self.gen.forward(img)

                ########################
                ########Update D########
                ########################
                self.D_optimizer.zero_grad()

                # train with fake
                fake_img_gt = torch.cat((img, fake_gt), 1)
                pred_fake = self.dis.forward(fake_img_gt.detach())
                batchsize, _, w, h = pred_fake.size()

                loss_d_fake = torch.sum(get_softplus(-pred_fake)) / batchsize / w / h

                # train with real
                real_img_gt = torch.cat((img, gt), 1)
                pred_real = self.dis.forward(real_img_gt)
                loss_d_real = torch.sum(get_softplus(-pred_real)) / batchsize / w / h

                # combined loss

                loss_d = loss_d_fake + loss_d_real

                loss_d.backward()

                if epoch % args.minimax == 0:
                    self.D_optimizer.step()

                ########################
                ########Update G########
                ########################
                self.G_optimizer.zero_grad()

                # First , G(A) should fake the discriminator
                fake_img_gt = torch.cat((img, fake_gt), 1)
                pred_fake = self.dis.forward(fake_img_gt)
                loss_g_gan = torch.sum(get_softplus(-pred_fake)) / batchsize / w /h

                # Second  G(A) = B

                loss_g_l1 = get_l1_loss_function(fake_gt,gt) * args.config.lamb

                loss_g = loss_g_gan + loss_g_l1

                loss_g.backward()

                self.G_optimizer.step()

                # log
                if i % 100 == 0:
                    print(
                        "===> Epoch[{}]({}/{}): loss_d_fake: {:.4f} loss_d_real: {:.4f} loss_g_gan: {:.4f} loss_g_l1: {:.4f}".format(
                            epoch, i, len(train_dataloader), loss_d_fake.item(), loss_d_real.item(),
                            loss_g_gan.item(), loss_g_l1.item()))

                    log = {}

                    log['epoch'] = epoch
                    log['iteration'] = len(train_dataloader) * (epoch - 1) + i
                    log['gen/loss'] = loss_g.item()
                    log['dis/loss'] = loss_d.item()

                    logreport(log)

                    with torch.no_grad():
                        log_test = test(args, test_dataloader, self.gen, get_mse_loss_function(), epoch)
                        testreport(log_test)

                    if epoch % args.snapshot_interval == 0:
                        checkpoint(args, epoch, self.gen, self.dis)

                    logreport.save_lossgraph()
                    testreport.save_lossgraph()