Esempio n. 1
0
    def __init__(self, args, mode, dataset_path='../datasets', classes=4, dim=(32, 32, 32), split_id=0, samples=1000,
                 load=False):
        self.mode = mode
        self.root = dataset_path
        self.classes = classes
        dataset_name = "mrbrains" + str(classes)
        self.training_path = self.root + '/mrbrains_2018/training'
        self.dirs = os.listdir(self.training_path)
        self.samples = samples
        self.list = []
        self.full_vol_size = (240, 240, 48)
        self.threshold = 0.1
        self.crop_dim = dim
        self.list_flair = []
        self.list_ir = []
        self.list_reg_ir = []
        self.list_reg_t1 = []
        self.labels = []
        self.full_volume = None
        self.save_name = self.root + '/mrbrains_2018/training/mrbrains_2018-classes-' + str(
            classes) + '-list-' + mode + '-samples-' + str(
            samples) + '.txt'

        if load:
            ## load pre-generated data
            self.list = utils.load_list(self.save_name)
            return

        subvol = '_vol_' + str(dim[0]) + 'x' + str(dim[1]) + 'x' + str(dim[2])
        self.sub_vol_path = self.root + '/mrbrains_2018/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_reg_t1 = sorted(glob.glob(os.path.join(self.training_path, '*/pr*/*g_T1.nii.gz')))
        list_reg_ir = sorted(glob.glob(os.path.join(self.training_path, '*/pr*/*g_IR.nii.gz')))
        list_flair = sorted(glob.glob(os.path.join(self.training_path, '*/pr*/*AIR.nii.gz')))
        labels = sorted(glob.glob(os.path.join(self.training_path, '*/*egm.nii.gz')))
        self.affine = img_loader.load_affine_matrix(list_reg_t1[0])

        split_id = int(split_id)
        if mode == 'val':
            labels = [labels[split_id]]
            list_reg_t1 = [list_reg_t1[split_id]]
            list_reg_ir = [list_reg_ir[split_id]]
            list_flair = [list_flair[split_id]]
            self.full_volume = get_viz_set(list_reg_t1, list_reg_ir, list_flair, labels, dataset_name=dataset_name)
        else:
            labels.pop(split_id)
            list_reg_t1.pop(split_id)
            list_reg_ir.pop(split_id)
            list_flair.pop(split_id)

        self.list = create_sub_volumes(list_reg_t1, list_reg_ir, list_flair, labels,
                                       dataset_name=dataset_name, mode=mode,
                                       samples=samples, full_vol_dim=self.full_vol_size,
                                       crop_size=self.crop_dim, sub_vol_path=self.sub_vol_path,
                                       th_percent=self.threshold)

        utils.save_list(self.save_name, self.list)
Esempio n. 2
0
    def __init__(self,
                 mode,
                 dataset_path='./datasets',
                 crop_dim=(32, 32, 32),
                 split_id=1,
                 samples=1000,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param fold_id: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/iseg_2017/iSeg-2017-Training/'
        self.testing_path = self.root + '/iseg_2017/iSeg-2017-Testing/'
        self.CLASSES = 4
        self.full_vol_dim = (144, 192, 256)  # slice, width, height
        self.crop_size = crop_dim
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.save_name = self.root + '/iseg_2017/iSeg-2017-Training/iseg2017-list-' + mode + '-samples-' + str(
            samples) + '.txt'

        if load:
            self.list = utils.load_list(self.save_name)
            list_IDsT1 = sorted(
                glob.glob(os.path.join(self.training_path, '*T1.img')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/iseg_2017/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*T1.img')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*T2.img')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*label.img')))
        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            list_IDsT1 = list_IDsT1[:split_id]
            list_IDsT2 = list_IDsT2[:split_id]
            labels = labels[:split_id]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2017",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           threshold=10)

        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_id:]
            list_IDsT2 = list_IDsT2[:split_id:]
            labels = labels[split_id:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2017",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           threshold=10)

            self.full_volume = get_viz_set(list_IDsT1, list_IDsT2, labels)

        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T1.img')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T2.img')))
            self.labels = None

        utils.save_list(self.save_name, self.list)
Esempio n. 3
0
    def __init__(self,
                 args,
                 mode,
                 dataset_path='./datasets',
                 crop_dim=(32, 32, 32),
                 split_id=1,
                 samples=1000,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param fold_id: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/iseg_2019/iSeg-2019-Training/'
        self.testing_path = self.root + '/iseg_2019/iSeg-2019-Validation/'
        self.CLASSES = 4
        self.full_vol_dim = (144, 192, 256)  # slice, width, height
        self.crop_size = crop_dim
        self.threshold = args.threshold
        self.normalization = args.normalization
        self.augmentation = args.augmentation
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.save_name = self.root + '/iseg_2019/iseg2019-list-' + mode + '-samples-' + str(
            samples) + '.txt'
        if self.augmentation:
            self.transform = augment3D.RandomChoice(transforms=[
                augment3D.GaussianNoise(mean=0, std=0.01),
                augment3D.RandomFlip(),
                augment3D.ElasticTransform()
            ],
                                                    p=0.5)
        if load:
            ## load pre-generated data
            self.list = utils.load_list(self.save_name)
            list_IDsT1 = sorted(
                glob.glob(os.path.join(self.training_path, '*T1.img')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/iseg_2019/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*T1.img')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*T2.img')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*label.img')))
        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            list_IDsT1 = list_IDsT1[:split_id]
            list_IDsT2 = list_IDsT2[:split_id]
            labels = labels[:split_id]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           th_percent=self.threshold)

        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_id:]
            list_IDsT2 = list_IDsT2[:split_id:]
            labels = labels[split_id:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           th_percent=self.threshold)

            self.full_volume = get_viz_set(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2019")

        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T1.img')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T2.img')))
            self.labels = None
            # todo inference here

        utils.save_list(self.save_name, self.list)