Esempio n. 1
0
def search_Mahalanobis_hyperparams(model, 
                            sample_mean, 
                            precision,
                            layer_indexs,
                            num_classes,
                            ind_dataloader_val_for_train, 
                            ood_dataloader_val_for_train, 
                            ind_dataloader_val_for_test, 
                            ood_dataloader_val_for_test, 
                            std):
    # magnitude_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]
    magnitude_list = [0.02, 0.015, 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.0014, 0.001, 0.0005]
    best_magnitude = None
    best_tnr = 0
    for m in tqdm(magnitude_list, desc="magnitude"):
        ind_features_val_for_train = get_Mahalanobis_score_ensemble(model, ind_dataloader_val_for_train, layer_indexs, num_classes, sample_mean, precision, m, std)
        ood_features_val_for_train = get_Mahalanobis_score_ensemble(model, ood_dataloader_val_for_train, layer_indexs, num_classes, sample_mean, precision, m, std)

        ind_features_val_for_test = get_Mahalanobis_score_ensemble(model, ind_dataloader_val_for_test, layer_indexs, num_classes, sample_mean, precision, m, std)
        ood_features_val_for_test = get_Mahalanobis_score_ensemble(model, ood_dataloader_val_for_test, layer_indexs, num_classes, sample_mean, precision, m, std)
        
        lr = train_lr(ind_features_val_for_train, ood_features_val_for_train)
        
        metrics = get_metrics(lr, ind_features_val_for_test, ood_features_val_for_test, acc_type="best")
        print("m:{}, metrics:{}".format(m, metrics))
        if metrics['TNR@tpr=0.95'] > best_tnr:
            best_tnr = metrics['TNR@tpr=0.95']
            best_magnitude = m
    return best_magnitude
Esempio n. 2
0
def search_FSS_hyperparams(model, 
                            fss,
                            layer_indexs,
                            ind_dataloader_val_for_train, 
                            ood_dataloader_val_for_train, 
                            ind_dataloader_val_for_test, 
                            ood_dataloader_val_for_test, 
                            std):
    # magnitude_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]
    magnitude_list = [0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.008, 0.006, 0.004, 0.002, 0.001, 0.0008, 0.0006, 0.0004, 0.0002, 0.0001, 0.0]
    best_magnitude = None
    best_tnr = 0
    for m in tqdm(magnitude_list, desc="magnitude"):
        ind_features_val_for_train = get_FSS_score_ensem_process(model, ind_dataloader_val_for_train, fss, layer_indexs, m, std)
        ood_features_val_for_train = get_FSS_score_ensem_process(model, ood_dataloader_val_for_train, fss, layer_indexs, m, std)

        ind_features_val_for_test = get_FSS_score_ensem_process(model, ind_dataloader_val_for_test, fss, layer_indexs, m, std)
        ood_features_val_for_test = get_FSS_score_ensem_process(model, ood_dataloader_val_for_test, fss, layer_indexs, m, std)
        
        lr = train_lr(ind_features_val_for_train, ood_features_val_for_train)
        metrics = get_metrics(lr, ind_features_val_for_test, ood_features_val_for_test, acc_type="best")
        print("m:{}, metrics:{}".format(m, metrics))
        if metrics['TNR@tpr=0.95'] > best_tnr:
            best_tnr = metrics['TNR@tpr=0.95']
            best_magnitude = m
    return best_magnitude
Esempio n. 3
0
def search_ODIN_hyperparams(model, ind_dataloader_val_for_train,
                            ood_dataloader_val_for_train,
                            ind_dataloader_val_for_test,
                            ood_dataloader_val_for_test, std):
    # magnitude_list = [0, 0.0005, 0.001, 0.0012, 0.0014, 0.0018, 0.002, 0.0024, 0.005, 0.008, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0]
    magnitude_list = [
        0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.008,
        0.006, 0.004, 0.002, 0.001, 0.0008, 0.0006, 0.0004, 0.0002, 0.0001, 0.0
    ]
    # magnitude_list = [0.009, 0.01, 0.011, 0.012, 0.013, 0.014, 0.015]
    # magnitude_list = [0,]
    # magnitude_list = [0, 0.01,]
    temperature_list = [1, 10, 100, 1000]
    # temperature_list = [1000,]
    # temperature_list = [1,]

    best_magnitude = None
    best_temperature = None
    best_tnr = 0
    for m in tqdm(magnitude_list, desc="magnitude"):
        for t in tqdm(temperature_list, desc="temperature"):
            print("get_ODIN_score for ind_scores_train")
            ind_scores_train = get_ODIN_score(model,
                                              ind_dataloader_val_for_train, m,
                                              t, std)
            print("get_ODIN_score for ood_scores_train")
            ood_scores_train = get_ODIN_score(model,
                                              ood_dataloader_val_for_train, m,
                                              t, std)
            ind_features_val_for_train = ind_scores_train.reshape(-1, 1)
            ood_features_val_for_train = ood_scores_train.reshape(-1, 1)
            print("train lr")
            lr = train_lr(ind_features_val_for_train,
                          ood_features_val_for_train)

            print("get_ODIN_score for ind_scores_test")
            ind_scores_test = get_ODIN_score(model,
                                             ind_dataloader_val_for_test, m, t,
                                             std)
            print("get_ODIN_score for ood_scores_test")
            ood_scores_test = get_ODIN_score(model,
                                             ood_dataloader_val_for_test, m, t,
                                             std)
            ind_features_val_for_test = ind_scores_test.reshape(-1, 1)
            ood_features_val_for_test = ood_scores_test.reshape(-1, 1)
            metrics = get_metrics(lr, ind_features_val_for_test,
                                  ood_features_val_for_test)
            print("t:{}, m:{}, metrics:{}".format(t, m, metrics))
            if metrics['TNR@tpr=0.95'] > best_tnr:
                best_tnr = metrics['TNR@tpr=0.95']
                best_magnitude = m
                best_temperature = t
    return best_temperature, best_magnitude
Esempio n. 4
0
                                              best_temperature,
                                              std=std)
    ind_ensemble_val.append(ind_scores_val_for_train)
    ood_ensemble_val.append(ood_scores_val_for_train)

    ind_scores_test = get_ODIN_score(model,
                                     ind_dataloader_test,
                                     best_magnitude,
                                     best_temperature,
                                     std=std)
    ood_scores_test = get_ODIN_score(model,
                                     ood_dataloader_test,
                                     best_magnitude,
                                     best_temperature,
                                     std=std)
    ind_ensemble_test.append(ind_scores_test)
    ood_ensemble_test.append(ood_scores_test)

take_mean_and_reshape = lambda x: np.array(x).mean(axis=0).reshape(-1, 1)
ind_val, ood_val, ind_test, ood_test = map(
    take_mean_and_reshape,
    [ind_ensemble_val, ood_ensemble_val, ind_ensemble_test, ood_ensemble_test])

# ----- Train OoD detector using validation data -----
from lib.metric import get_metrics, train_lr
lr = train_lr(ind_val, ood_val)

# ----- Calculating metrics using test data -----
metrics = get_metrics(lr, ind_test, ood_test, acc_type="best")
print("metrics: ", metrics)
Esempio n. 5
0
    std=std)

ind_features_test = get_Mahalanobis_score_ensemble(model,
                                                   ind_dataloader_test,
                                                   layer_indexs,
                                                   num_classes,
                                                   sample_mean,
                                                   precision,
                                                   best_magnitude,
                                                   std=std)
ood_features_test = get_Mahalanobis_score_ensemble(
    model,
    ood_dataloader_test,
    layer_indexs,
    num_classes,
    sample_mean,
    precision,
    best_magnitude,
    std=std)[:len(ind_features_test)]

# ----- Training OoD detector using validation data -----
lr = train_lr(ind_features_val_for_train, ood_features_val_for_train)

# ----- Calculating metrics using test data -----
metrics = get_metrics(lr,
                      ind_features_test,
                      ood_features_test,
                      acc_type="best")
print("best params: ", best_magnitude)
print("metrics: ", metrics)