def __init__(self, initial_tagger, templates, trace=0, **property_names): self._initial_tagger = initial_tagger self._templates = templates self._trace = trace self._property_names = property_names PropertyIndirectionMixIn.__init__(self, **property_names)
def __init__(self, preterminal_tags=False, **property_names): """ @param preterminal_tags: If true, then treat preterminal nodes as tags. @type preterminal_tags: C{boolean} """ PropertyIndirectionMixIn.__init__(self, **property_names) self._preterminal_tags = preterminal_tags self._source = None # <- not thread-safe.
def __init__(self, encoders, **property_names): """ Create a new merged feature encoder. @param encoders: The basic feature encoders whose output should be combined to form this encoder's output. """ PropertyIndirectionMixIn.__init__(self, **property_names) self._encoders = encoders
def __init__(self, initial_tagger, rules, **property_names): """ @param initial_tagger: The initial tagger @type initial_tagger: L{TaggerI} @param rules: An ordered list of transformation rules that should be used to correct the initial tagging. @type rules: C{list} of L{BrillRuleI} """ self._initial_tagger = initial_tagger self._rules = rules PropertyIndirectionMixIn.__init__(self, **property_names)
def __init__(self, top_node='S', chunk_node='CHUNK', **property_names): """ @include: AbstractTokenizer.__init__ @type chunk_node: C{string} @param chunk_node: The node label that should be used for chunk subtrees. This is typically a short string describing the type of information contained by the chunk, such as C{"NP"} for base noun phrases. """ PropertyIndirectionMixIn.__init__(self, **property_names) self._chunk_node = chunk_node self._top_node = top_node
def __init__(self, **property_names): """ Construct a new tokenizer. @type property_names: C{dict} @param property_names: A dictionary that can be used to override the default property names. Each entry maps from a default property name to a new property name. """ if self.__class__ == AbstractTokenizer: raise AssertionError, "Abstract classes can't be instantiated" PropertyIndirectionMixIn.__init__(self, **property_names)
def __init__(self, reverse=False, **property_names): """ Construct a new sequential tagger. @param reverse: If true, then assign tags to subtokens in reverse sequential order (i.e., from right to left). @type property_names: C{dict} @param property_names: A dictionary that can be used to override the default property names. Each entry maps from a default property name to a new property name. """ self._reverse = reverse PropertyIndirectionMixIn.__init__(self, **property_names)
def __init__(self, **property_names): """ Create a new stemmer. @type property_names: C{dict} @param property_names: A dictionary that can be used to override the default property names. Each entry maps from a default property name to a new property name. """ # Make sure we're not directly instantiated: if self.__class__ == AbstractStemmer: raise AssertionError, "Abstract classes can't be instantiated" PropertyIndirectionMixIn.__init__(self, **property_names)
def __init__(self, chunk_types = ['LOCATION', 'ORGANIZATION', 'PERSON', 'DURATION', 'DATE', 'CARDINAL', 'PERCENT', 'MONEY', 'MEASURE'], **property_names): """ Create a new C{IeerChunkedTokenizer}. @type chunk_types: C{string} @param chunk_types: A list of the node types to be extracted from the input. Possible node types are C{'LOCATION'}, C{'ORGANIZATION'}, C{'PERSON'}, C{'DURATION'}, C{'DATE'}, C{'CARDINAL'}, C{'PERCENT'}, C{'MONEY'}, C{'MEASURE'} """ PropertyIndirectionMixIn.__init__(self, **property_names) self._chunk_types = chunk_types
def __init__(self, base_encoder, C=None, **property_names): """ @param C: The correction constant for this encoder. This value must be at least as great as the highest sum of feature vectors that could be returned by C{base_encoder}. If no value is given, a default of C{len(base_encoder)} is used. While this value is safe (for boolean feature vectors), it is highly conservative, and usually leads to poor performance. @type C: C{int} """ PropertyIndirectionMixIn.__init__(self, **property_names) self._encoder = base_encoder if C is None: self._C = encoder.num_features() else: self._C = C
def __init__(self, classes, weights, **property_names): """ Construct a new conditional exponential classifier model. Typically, new classifier models are created by C{ClassifierTrainer}s. @type classes: C{list} @param classes: A list of the classes that can be generated by this classifier. The order of these classes must correspond to the order of the weights. @type weights: C{list} of C{float} @param weights: The feature weight vector for this classifier. Weight M{w[i,j]} is encoded by C{weights[i+j*N]}, where C{N} is the length of the feature vector. """ PropertyIndirectionMixIn.__init__(self, **property_names) self._classes = classes # <- order matters here! self._weights = weights
def __init__(self, feature_name, values, **property_names): """ Create a new feature encoder that encodes the feature with the given name. @type feature_name: C{string} @param feature_name: The name of the feature to encode. @type values: C{list} @param values: A list of the feature values of subvalues that the feature is known to take. A feature vector index will also be created for unseen values. """ PropertyIndirectionMixIn.__init__(self, **property_names) self._feature_name = feature_name # Initialize the mappings between basic values and feature # vector indices. Reserve index 0 for unseen feature values. self._index_to_val = ['<unknown>']+list(values) self._val_to_index = dict([(v,i+1) for (i,v) in enumerate(values)])
def __init__(self, **property_names): PropertyIndirectionMixIn.__init__(self, **property_names) # A token reader for processing sentences. self._sent_reader = ChunkedTaggedTokenReader( top_node='S', chunk_node='NP', **property_names)
def __init__(self, **property_names): PropertyIndirectionMixIn.__init__(self, **property_names)
def __init__(self, chunk_types=None, **property_names): PropertyIndirectionMixIn.__init__(self, **property_names) self._chunk_types = chunk_types