Esempio n. 1
0
 def visualize_predictions(self, datum, output, iteration):
   # FIXME: Refactor visualization code.
   coords = datum['coords'].numpy()
   batch_size = coords[:, 0].max() + 1
   output_path = pathlib.Path(self.config.visualize_path)
   output_path.mkdir(exist_ok=True)
   for i in range(batch_size):
     # Visualize RGB input.
     coords_mask = coords[:, 0] == i
     coords_b = coords[coords_mask, 1:]
     if datum['input'].shape[1] > 3:
       rgb_b = ((datum['input'][:, :3] + 0.5) * 255).numpy()
     else:
       rgb_b = ((datum['input'].repeat(1, 3) - datum['input'].min())
                / (datum['input'].max() - datum['input'].min()) * 255).numpy()
     ptc = np.hstack((coords_b, rgb_b))
     bbox_scores = output['detection'][i][:, -1]
     bbox_mask = bbox_scores > self.config.visualize_min_confidence
     if self.dataset.IS_ROTATION_BBOX:
       bboxes = pc_utils.visualize_bboxes(output['detection'][i][bbox_mask][:, :7],
                                          output['detection'][i][bbox_mask][:, 7],
                                          bbox_param='xyzxyzr')
     else:
       bboxes = pc_utils.visualize_bboxes(output['detection'][i][bbox_mask][:, :6],
                                          output['detection'][i][bbox_mask][:, 6])
     pc_utils.visualize_pcd(ptc, bboxes)
Esempio n. 2
0
 scene_f = SCANNET_ALIGNMENT_PATH % (filename, filename)
 alignment_txt = [
     l for l in read_txt(scene_f) if l.startswith('axisAlignment = ')
 ][0]
 rot = np.array([float(x)
                 for x in alignment_txt[16:].split()]).reshape(4, 4)
 mesh.transform(rot)
 pred_ours = np.load(os.path.join(OURS_PRED_PATH, 'out_%03d.npy.npz' % i))
 gt = pc_utils.visualize_bboxes(pred_ours['gt'][:, :6],
                                pred_ours['gt'][:, 6],
                                num_points=NUM_BBOX_POINTS)
 pred_ours = pc_utils.visualize_bboxes(pred_ours['pred'][:, :6],
                                       pred_ours['pred'][:, 6],
                                       num_points=NUM_BBOX_POINTS)
 params = pc_utils.visualize_pcd(gt,
                                 mesh,
                                 save_image=f'viz_{filename}_gt.png')
 pc_utils.visualize_pcd(mesh,
                        camera_params=params,
                        save_image=f'viz_{filename}_input.png')
 pc_utils.visualize_pcd(pred_ours,
                        mesh,
                        camera_params=params,
                        save_image=f'viz_{filename}_ours.png')
 pred_votenet = np.load(os.path.join(VOTENET_PRED_PATH, f'{filename}.npy'),
                        allow_pickle=True)[0]
 votenet_preds = []
 for pred_cls, pred_bbox, pred_score in pred_votenet:
     pred_bbox = pred_bbox[:, (0, 2, 1)]
     pred_bbox[:, -1] *= -1
     votenet_preds.append(
Esempio n. 3
0
import os

import numpy as np

import lib.pc_utils as pc_utils
from lib.utils import read_txt

OURS_PRED_PATH = 'outputs/visualization/ours_stanford'
STANFORD_PATH = '/cvgl/group/Stanford3dDataset_v1.2/Area_5'
NUM_BBOX_POINTS = 1000

files = sorted(read_txt('/scr/jgwak/Datasets/stanford3d/test.txt'))
for i, fn in enumerate(files):
  area_name = os.path.splitext(fn.split(os.sep)[-1])[0]
  area_name = '_'.join(area_name.split('_')[1:])[:-2]
  # area_name = 'office_34'
  # i = [i for i, fn in enumerate(files) if area_name in fn][0]
  if area_name.startswith('WC_') or area_name.startswith('hallway_'):
    continue
  ptc_fn = os.path.join(STANFORD_PATH, area_name, f'{area_name}.txt')
  ptc = np.array([l.split() for l in read_txt(ptc_fn)]).astype(float)
  pred_ours = np.load(os.path.join(OURS_PRED_PATH, 'out_%03d.npy.npz' % i))
  gt = pc_utils.visualize_bboxes(pred_ours['gt'][:, :6], pred_ours['gt'][:, 6],
                                 num_points=NUM_BBOX_POINTS)
  pred_ours = pc_utils.visualize_bboxes(pred_ours['pred'][:, :6], pred_ours['pred'][:, 6],
                                        num_points=NUM_BBOX_POINTS)
  params = pc_utils.visualize_pcd(gt, ptc, save_image=f'viz_Area5_{area_name}_gt.png')
  pc_utils.visualize_pcd(ptc, camera_params=params, save_image=f'viz_Area5_{area_name}_input.png')
  pc_utils.visualize_pcd(pred_ours, ptc, camera_params=params,
                         save_image=f'viz_Area5_{area_name}_ours.png')
Esempio n. 4
0
File: gibson.py Progetto: jgwak/GSDN
def main():
    pcd = o3d.io.read_point_cloud(INPUT_PCD)
    pcd_xyz, pcd_feats = np.asarray(pcd.points), np.asarray(pcd.colors)
    print(f'Finished reading {INPUT_PCD}:')
    print(f'# points: {pcd_xyz.shape[0]} points')
    print(f'volume: {np.prod(pcd_xyz.max(0) - pcd_xyz.min(0))} m^3')

    sparse_voxelizer = Voxelizer(voxel_size=0.05)

    height = pcd_xyz[:, LOCFEAT_IDX].copy()
    height -= np.percentile(height, 0.99)
    pcd_feats = np.hstack((pcd_feats, height[:, None]))

    preprocess = []
    for i in range(7):
        start = time.time()
        coords, feats, labels, transformation = sparse_voxelizer.voxelize(
            pcd_xyz, pcd_feats, None)
        preprocess.append(time.time() - start)
    print('Voxelization time average: ', np.mean(preprocess[2:]))

    coords = ME.utils.batched_coordinates([torch.from_numpy(coords).int()])
    feats = torch.from_numpy(feats.astype(np.float32)).to('cuda')

    config = get_config()
    DatasetClass = load_dataset(config.dataset)
    dataloader = initialize_data_loader(DatasetClass,
                                        config,
                                        threads=config.threads,
                                        phase=config.test_phase,
                                        augment_data=False,
                                        shuffle=False,
                                        repeat=False,
                                        batch_size=config.test_batch_size,
                                        limit_numpoints=False)
    pipeline_model = load_pipeline(config, dataloader.dataset)
    if config.weights.lower() != 'none':
        state = torch.load(config.weights)
        pipeline_model.load_state_dict(
            state['state_dict'], strict=(not config.lenient_weight_loading))

    pipeline_model.eval()

    evaltime = []
    for i in range(7):
        start = time.time()
        sinput = ME.SparseTensor(feats, coords).to('cuda')
        datum = {'sinput': sinput, 'anchor_match_coords': None}
        outputs = pipeline_model(datum, False)
        evaltime.append(time.time() - start)
    print('Network runtime average: ', np.mean(evaltime[2:]))

    pred = outputs['detection'][0]
    pred_mask = pred[:, -1] > MIN_CONF
    pred = pred[pred_mask]
    print(f'Detected {pred.shape[0]} instances')

    bbox_xyz = pred[:, :6]
    bbox_xyz += 0.5
    bbox_xyz[:, :3] += 0.5
    bbox_xyz[:, 3:] -= 0.5
    bbox_xyz[:, 3:] = np.maximum(bbox_xyz[:, 3:], bbox_xyz[:, :3] + 0.1)
    bbox_xyz = bbox_xyz.reshape(-1, 3)
    bbox_xyz1 = np.hstack((bbox_xyz, np.ones((bbox_xyz.shape[0], 1))))
    bbox_xyz = np.linalg.solve(transformation.reshape(4, 4),
                               bbox_xyz1.T).T[:, :3].reshape(-1, 6)
    pred = np.hstack((bbox_xyz, pred[:, 6:]))
    pred_pcd = pc_utils.visualize_bboxes(pred[:, :6],
                                         pred[:, 6],
                                         num_points=1000)

    mesh = o3d.io.read_triangle_mesh(INPUT_MESH)
    mesh.compute_vertex_normals()
    pc_utils.visualize_pcd(mesh, pred_pcd)