def _example_serving_input_fn(): feature_spec = tf_lib.get_feature_spec(model_name, ctx, training=False) example_bytestring = tf.placeholder(shape=[None], dtype=tf.string) feature_scalars = tf.parse_single_example(example_bytestring, feature_spec) features = {key: tf.expand_dims(tensor, -1) for key, tensor in feature_scalars.items()} return tf.estimator.export.ServingInputReceiver( features=features, receiver_tensors={"example_proto": example_bytestring} )
def generate_example_parsing_fn(model_name, ctx, training=True): model = ctx.models[model_name] feature_spec = tf_lib.get_feature_spec(model_name, ctx, training) def _parse_example(example_proto): features = tf.parse_single_example(serialized=example_proto, features=feature_spec) target = features.pop(model["target_column"], None) return features, target return _parse_example