def deserialize_tree(s):
     if not s:
         return
     val = s.pop(0)
     root = None
     if val != 'null':
         root = TreeNode(val)
         root.left = deserialize_tree(s)
         root.right = deserialize_tree(s)
     return root
Esempio n. 2
0
    def build1(inorder, postorder):
        if not inorder:
            return None
        elif len(inorder) == 1:
            return TreeNode(inorder[0])
        else:
            postorder_root_val = postorder[-1]
            root = TreeNode(postorder_root_val)
            for i in range(len(inorder)):
                if postorder_root_val == inorder[i]:
                    inorder_root_index = i
                    break
            if inorder_root_index == 0:
                root.left = None
                root.right = build1(inorder[1:], postorder[:-1])
            elif inorder_root_index == len(inorder) - 1:
                root.left = build1(inorder[:-1], postorder[:-1])
                root.right = None
            else:
                root.left = build1(inorder[:inorder_root_index],
                                   postorder[:inorder_root_index])
                root.right = build1(inorder[inorder_root_index + 1:],
                                    postorder[inorder_root_index:-1])

        return root
Esempio n. 3
0
    def build1(preorder, inorder):
        if not preorder:
            return None
        if len(preorder) <= 1:
            return TreeNode(preorder[0])
        root_node = preorder[0]
        root = TreeNode(root_node)
        for i in range(len(inorder)):
            if root_node == inorder[i]:
                inorder_root_node_index = i
                break

        root.left = build1(preorder[1:inorder_root_node_index + 1],
                           inorder[:inorder_root_node_index])
        root.right = build1(preorder[inorder_root_node_index + 1:],
                            inorder[inorder_root_node_index + 1:])

        return root
Esempio n. 4
0
def before_middle_construct_tree(before_seq, middle_seq):
    """
    根据二叉树的前序遍历和中序遍历重建二叉树
    :param before_seq: List[int]
    :param middle_seq: List[int]
    :return: TreeNode
    """
    if len(before_seq) == 0 or len(middle_seq) == 0:
        return
    root_node = TreeNode(before_seq[0])
    root_index = middle_seq.index(root_node.val)
    left_node = before_middle_construct_tree(before_seq[1:root_index + 1],
                                             middle_seq[:root_index])
    right_node = before_middle_construct_tree(before_seq[root_index + 1:],
                                              middle_seq[root_index + 1:])
    root_node.left = left_node
    root_node.right = right_node
    return root_node
    # 非递归方式解法,父亲节点的元组中第一个元素为0,孩子节点的元组中第一个元素为1
    res = []
    s = [(1, root)]  # 0表示不可以往下遍历,1表示可以往下继续遍历
    while s:
        p = s.pop()
        if not p[1]:  # 判断某个节点为空
            continue
        if p[0]:  # 判断为子节点的话,就继续往栈里面放数据
            s.extend([(1, p[1].right), (0, p[1]), (1, p[1].left)])
        else:  # 判断为主节点的话,就说明其左节点已经为空了,那么该父节点可以输出到数组中了
            res.append(p[1].val)
    return res


if __name__ == "__main__":
    """
                1
            4       2
        3       6
        """
    root = TreeNode(1)
    root.left = layer2_left = TreeNode(4)
    root.right = layer2_right = TreeNode(2)
    layer2_left.left = TreeNode(3)
    layer2_left.right = TreeNode(6)

    # print(tree_in_order_traversal(root))
    # res = []
    # tree_in_order_traversal1(root, res)
    # print(res)
    print(tree_in_order_traversal2(root))
Esempio n. 6
0
        elif nums[low] + nums[high] < k:
            low += 1
        else:
            return True
    return False


if __name__ == "__main__":
    """
         5
       / \
      3   6
     / \   \
    2   4   7
    
    Target = 9
    """
    root = TreeNode(5)
    root.left = layer2_left = TreeNode(3)
    root.right = layer2_right = TreeNode(6)
    layer2_left.left = TreeNode(2)
    layer2_left.right = TreeNode(4)
    layer2_right.right = TreeNode(7)

    target = 9

    print(two_sum_iv_input_bst(root, k=target))



    #             root = root.left
    #     return res
    # return pre_traverse(root)

    # Solution3
    def is_symmetrical(root1, root2):
        if not root1 and not root2:
            return True
        if not root1 or not root2:
            return False
        if root1.val != root2.val:
            return False
        return is_symmetrical(root1.left, root2.right) and is_symmetrical(
            root1.right, root2.left)

    if not root:
        return True
    return is_symmetrical(root.left, root.right)


if __name__ == "__main__":
    root = TreeNode(1)
    root.left = layer2_left = TreeNode(4)
    root.right = layer2_right = TreeNode(4)
    layer2_left.right = layer3_left_left = TreeNode(6)
    layer2_left.left = layer3_left_right = TreeNode(3)
    layer2_right.right = layer3_right_left = TreeNode(3)
    layer2_right.left = layer3_right_right = TreeNode(6)

    print(symmetrical_tree(root))
                return 0
            left = max(helper(node.left), 0)  # 如果有加和为负值的左路径,就直接省略了
            right = max(helper(node.right), 0)  # 如果有加和为负值的右路径,就直接省略了
            self.res = max(self.res, left + right + node.val)
            return max(left, right) + node.val

        helper(root)
        return self.res


if __name__ == "__main__":
    """
                    -10
                20       9
             15    7
    上面的和最大路径就是 15-20-7,最大和为42
    """
    root = TreeNode(-10)
    root.left = layer2_left = TreeNode(20)
    root.right = layer2_right = TreeNode(9)
    layer2_left.left = layer3_left1 = TreeNode(15)
    layer2_left.right = layer3_right1 = TreeNode(7)
    layer2_right.left = None
    layer2_right.right = None
    layer3_left1.left = None
    layer3_left1.right = None
    layer3_right1.left = None
    layer3_right1.right = None

    solu = Solution()
    print(solu.binary_tree_maximum_path_sum(root))
Esempio n. 9
0

def layerTraverse(root):
    node_a = []
    if root:
        node_a.append(root)
    while node_a:
        root = node_a.pop(0)
        print(root.val)
        if root.left:
            node_a.append(root.left)
        if root.right:
            node_a.append(root.right)


if __name__ == "__main__":
    root = TreeNode(1)
    root.left = layer2_left = TreeNode(2)
    root.right = layer2_right = TreeNode(3)
    layer2_left.left = layer31_left = TreeNode(4)
    layer2_left.right = layer31_right = TreeNode(5)
    layer2_right.left = layer32_left = TreeNode(6)
    layer2_right.right = layer32_right = TreeNode(7)

    layerTraverse(root)
    invertTree(root)
    print('\n')
    layerTraverse(root)


    :return: List[int]
    """
    def find_(root, target, path, cur_sum, res):
        cur_sum += root.val
        path.append(root.val)
        is_leaf = not root.left and not root.right
        if cur_sum == target and is_leaf:
            res.append(path + [])
        if root.left:
            find_(root.left, target, path, cur_sum, res)
        if root.right:
            find_(root.right, target, path, cur_sum, res)
        path.pop()  # 跳出本次递归之前需要复原path
        cur_sum -= root.val  # 跳出本次递归之前需要复原cur_sum

    if not root:
        return
    res = []
    find_(root, target, [], 0, res)

    return res


if __name__ == "__main__":
    root = TreeNode(10)
    root.left = layer2_left = TreeNode(5)
    root.right = layer2_right = TreeNode(12)
    layer2_left.left = TreeNode(4)
    layer2_left.right = TreeNode(7)

    print(find_path(root, 22))