Esempio n. 1
0
 def __init__(self):
     self.linemod_db = LineModModelDB()
     self.projector = Projector()
     self.projection_2d_recorder = []
     self.add_recorder = []
     self.cm_degree_5_recorder = []
     self.proj_mean_diffs = []
     self.add_dists = []
     self.uncertainty_pnp_cost = []
    from lib.datasets.linemod_dataset import LineModDatasetRealAug,ImageSizeBatchSampler,VotingType
    from lib.ransac_voting_gpu_layer.ransac_voting_gpu import ransac_voting_layer
    from torch.utils.data import RandomSampler,DataLoader
    from lib.utils.draw_utils import pts_to_img_pts
    from lib.utils.evaluation_utils import pnp
    import random

    image_db = LineModImageDB('duck', has_ro_set=False, has_ra_set=False, has_plane_set=False, has_render_set=False,
                              has_ms_set=False,has_fuse_set=False)
    random.shuffle(image_db.real_set)
    dataset = LineModDatasetRealAug(image_db.real_set[:5], data_prefix=image_db.linemod_dir,
                                    vote_type=VotingType.Extreme, augment=False)
    sampler = RandomSampler(dataset)
    batch_sampler = ImageSizeBatchSampler(sampler, 5, False)
    loader = DataLoader(dataset, batch_sampler=batch_sampler, num_workers=8)
    modeldb=LineModModelDB()
    camera_matrix=Projector().intrinsic_matrix['linemod'].astype(np.float32)
    for i, data in enumerate(loader):
        rgb, mask, vertex, vertex_weight, pose, gt_corners = data
        pts2d=gt_corners[0].numpy()[:,:2].astype(np.float32)

        pts3d=modeldb.get_extreme_3d('duck')
        pts3d=np.concatenate([pts3d,modeldb.get_centers_3d('duck')[None,:]],0).astype(np.float32)
        wgt2d=np.zeros([pts2d.shape[0],3]).astype(np.float32)
        wgt2d[:,(0,2)]=1.0

        for k in range(pts2d.shape[0]):
            if np.random.random()<0.5:
                scale = np.random.uniform(1, 8)
            else:
                scale = np.random.uniform(32, 48)
Esempio n. 3
0
    def get_pts_3d(vote_type, class_type):
        linemod_db = LineModModelDB()
        if vote_type == VotingType.BB8C:
            points_3d = linemod_db.get_corners_3d(class_type)
            points_3d = np.concatenate(
                [points_3d,
                 linemod_db.get_centers_3d(class_type)[None, :]], 0)
        elif vote_type == VotingType.BB8S:
            points_3d = linemod_db.get_small_bbox(class_type)
            points_3d = np.concatenate(
                [points_3d,
                 linemod_db.get_centers_3d(class_type)[None, :]], 0)
        elif vote_type == VotingType.Farthest:
            points_3d = linemod_db.get_farthest_3d(class_type)
            points_3d = np.concatenate(
                [points_3d,
                 linemod_db.get_centers_3d(class_type)[None, :]], 0)
        elif vote_type == VotingType.Farthest4:
            points_3d = linemod_db.get_farthest_3d(class_type, 4)
            points_3d = np.concatenate(
                [points_3d,
                 linemod_db.get_centers_3d(class_type)[None, :]], 0)
        elif vote_type == VotingType.Farthest12:
            points_3d = linemod_db.get_farthest_3d(class_type, 12)
            points_3d = np.concatenate(
                [points_3d,
                 linemod_db.get_centers_3d(class_type)[None, :]], 0)
        elif vote_type == VotingType.Farthest16:
            points_3d = linemod_db.get_farthest_3d(class_type, 16)
            points_3d = np.concatenate(
                [points_3d,
                 linemod_db.get_centers_3d(class_type)[None, :]], 0)
        elif vote_type == VotingType.Farthest20:
            points_3d = linemod_db.get_farthest_3d(class_type, 20)
            points_3d = np.concatenate(
                [points_3d,
                 linemod_db.get_centers_3d(class_type)[None, :]], 0)
        else:  # BB8
            points_3d = linemod_db.get_corners_3d(class_type)

        return points_3d
Esempio n. 4
0
class Evaluator(object):
    def __init__(self):
        self.linemod_db = LineModModelDB()
        self.projector = Projector()
        self.projection_2d_recorder = []
        self.add_recorder = []
        self.cm_degree_5_recorder = []
        self.proj_mean_diffs = []
        self.add_dists = []
        self.uncertainty_pnp_cost = []

    def projection_2d(self, pose_pred, pose_targets, model, K, threshold=5):
        model_2d_pred = self.projector.project_K(model, pose_pred, K)
        model_2d_targets = self.projector.project_K(model, pose_targets, K)
        proj_mean_diff = np.mean(
            np.linalg.norm(model_2d_pred - model_2d_targets, axis=-1))

        self.proj_mean_diffs.append(proj_mean_diff)
        self.projection_2d_recorder.append(proj_mean_diff < threshold)

    def projection_2d_sym(self,
                          pose_pred,
                          pose_targets,
                          model,
                          K,
                          threshold=5):
        model_2d_pred = self.projector.project_K(model, pose_pred, K)
        model_2d_targets = self.projector.project_K(model, pose_targets, K)
        proj_mean_diff = np.mean(
            find_nearest_point_distance(model_2d_pred, model_2d_targets))

        self.proj_mean_diffs.append(proj_mean_diff)
        self.projection_2d_recorder.append(proj_mean_diff < threshold)

    def add_metric(self,
                   pose_pred,
                   pose_targets,
                   model,
                   diameter,
                   percentage=0.1):
        """ ADD metric
        1. compute the average of the 3d distances between the transformed vertices
        2. pose_pred is considered correct if the distance is less than 10% of the object's diameter
        """
        diameter = diameter * percentage
        model_pred = np.dot(model, pose_pred[:, :3].T) + pose_pred[:, 3]
        model_targets = np.dot(model, pose_targets[:, :3].T) + pose_targets[:,
                                                                            3]

        # from skimage.io import imsave
        # id=uuid.uuid1()
        # write_points('{}_pred.txt'.format(id),model_pred)
        # write_points('{}_targ.txt'.format(id),model_targets)
        #
        # img_pts_pred=pts_to_img_pts(model_pred,np.identity(3),np.zeros(3),self.projector.intrinsic_matrix['blender'])[0]
        # img_pts_pred=img_pts_to_pts_img(img_pts_pred,480,640).flatten()
        # img=np.zeros([480*640,3],np.uint8)
        # img_pts_targ=pts_to_img_pts(model_targets,np.identity(3),np.zeros(3),self.projector.intrinsic_matrix['blender'])[0]
        # img_pts_targ=img_pts_to_pts_img(img_pts_targ,480,640).flatten()
        # img[img_pts_pred>0]+=np.asarray([255,0,0],np.uint8)
        # img[img_pts_targ>0]+=np.asarray([0,255,0],np.uint8)
        # img=img.reshape([480,640,3])
        # imsave('{}.png'.format(id),img)

        mean_dist = np.mean(np.linalg.norm(model_pred - model_targets,
                                           axis=-1))
        self.add_recorder.append(mean_dist < diameter)
        self.add_dists.append(mean_dist)

    def add_metric_sym(self,
                       pose_pred,
                       pose_targets,
                       model,
                       diameter,
                       percentage=0.1):
        """ ADD metric
        1. compute the average of the 3d distances between the transformed vertices
        2. pose_pred is considered correct if the distance is less than 10% of the object's diameter
        """
        diameter = diameter * percentage
        model_pred = np.dot(model, pose_pred[:, :3].T) + pose_pred[:, 3]
        model_targets = np.dot(model, pose_targets[:, :3].T) + pose_targets[:,
                                                                            3]

        mean_dist = np.mean(
            find_nearest_point_distance(model_pred, model_targets))
        self.add_recorder.append(mean_dist < diameter)
        self.add_dists.append(mean_dist)

    def cm_degree_5_metric(self, pose_pred, pose_targets):
        """ 5 cm 5 degree metric
        1. pose_pred is considered correct if the translation and rotation errors are below 5 cm and 5 degree respectively
        """
        translation_distance = np.linalg.norm(pose_pred[:, 3] -
                                              pose_targets[:, 3]) * 100
        rotation_diff = np.dot(pose_pred[:, :3], pose_targets[:, :3].T)
        trace = np.trace(rotation_diff)
        trace = trace if trace <= 3 else 3
        angular_distance = np.rad2deg(np.arccos((trace - 1.) / 2.))
        self.cm_degree_5_recorder.append(translation_distance < 5
                                         and angular_distance < 5)

    def evaluate(self,
                 points_2d,
                 pose_targets,
                 class_type,
                 intri_type='blender',
                 vote_type=VotingType.BB8,
                 intri_matrix=None):
        points_3d = VotingType.get_pts_3d(vote_type, class_type)

        if intri_type == 'use_intrinsic' and intri_matrix is not None:
            K = intri_matrix
        else:
            K = self.projector.intrinsic_matrix[intri_type]

        pose_pred = pnp(points_3d, points_2d, K)
        model = self.linemod_db.get_ply_model(class_type)
        diameter = self.linemod_db.get_diameter(class_type)

        if class_type in ['eggbox', 'glue']:
            self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        else:
            self.add_metric(pose_pred, pose_targets, model, diameter)

        self.projection_2d(pose_pred, pose_targets, model, K)
        self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred

    def evaluate_uncertainty(self,
                             mean_pts2d,
                             covar,
                             pose_targets,
                             class_type,
                             intri_type='blender',
                             vote_type=VotingType.BB8,
                             intri_matrix=None):
        points_3d = VotingType.get_pts_3d(vote_type, class_type)

        begin = time.time()
        # full
        cov_invs = []
        for vi in range(covar.shape[0]):
            if covar[vi, 0, 0] < 1e-6 or np.sum(np.isnan(covar)[vi]) > 0:
                cov_invs.append(np.zeros([2, 2]).astype(np.float32))
                continue

            cov_inv = np.linalg.inv(scipy.linalg.sqrtm(covar[vi]))
            cov_invs.append(cov_inv)
        cov_invs = np.asarray(cov_invs)  # pn,2,2
        weights = cov_invs.reshape([-1, 4])
        weights = weights[:, (0, 1, 3)]

        if intri_type == 'use_intrinsic' and intri_matrix is not None:
            K = intri_matrix
        else:
            K = self.projector.intrinsic_matrix[intri_type]

        pose_pred = uncertainty_pnp(mean_pts2d, weights, points_3d, K)
        model = self.linemod_db.get_ply_model(class_type)
        diameter = self.linemod_db.get_diameter(class_type)
        self.uncertainty_pnp_cost.append(time.time() - begin)

        if class_type in ['eggbox', 'glue']:
            self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        else:
            self.add_metric(pose_pred, pose_targets, model, diameter)

        self.projection_2d(pose_pred, pose_targets, model, K)
        self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred

    def evaluate_uncertainty_v2(self,
                                mean_pts2d,
                                covar,
                                pose_targets,
                                class_type,
                                intri_type='blender',
                                vote_type=VotingType.BB8):
        points_3d = VotingType.get_pts_3d(vote_type, class_type)

        pose_pred = uncertainty_pnp_v2(
            mean_pts2d, covar, points_3d,
            self.projector.intrinsic_matrix[intri_type])
        model = self.linemod_db.get_ply_model(class_type)
        diameter = self.linemod_db.get_diameter(class_type)

        if class_type in ['eggbox', 'glue']:
            self.projection_2d_sym(pose_pred, pose_targets, model,
                                   self.projector.intrinsic_matrix[intri_type])
            self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        else:
            self.projection_2d(pose_pred, pose_targets, model,
                               self.projector.intrinsic_matrix[intri_type])
            self.add_metric(pose_pred, pose_targets, model, diameter)
        self.cm_degree_5_metric(pose_pred, pose_targets)

    def average_precision(self, verbose=True):
        np.save('tmp.npy', np.asarray(self.proj_mean_diffs))
        if verbose:
            print('2d projections metric: {}'.format(
                np.mean(self.projection_2d_recorder)))
            print('ADD metric: {}'.format(np.mean(self.add_recorder)))
            print('5 cm 5 degree metric: {}'.format(
                np.mean(self.cm_degree_5_recorder)))

        return np.mean(self.projection_2d_recorder), np.mean(
            self.add_recorder), np.mean(self.cm_degree_5_recorder)
Esempio n. 5
0
    image_db = LineModImageDB('duck',
                              has_ro_set=False,
                              has_ra_set=False,
                              has_plane_set=False,
                              has_render_set=False,
                              has_ms_set=False,
                              has_fuse_set=False)
    random.shuffle(image_db.real_set)
    dataset = LineModDatasetRealAug(image_db.real_set[:5],
                                    data_prefix=image_db.linemod_dir,
                                    vote_type=VotingType.Extreme,
                                    augment=False)
    sampler = RandomSampler(dataset)
    batch_sampler = ImageSizeBatchSampler(sampler, 5, False)
    loader = DataLoader(dataset, batch_sampler=batch_sampler, num_workers=8)
    modeldb = LineModModelDB()
    camera_matrix = Projector().intrinsic_matrix['linemod'].astype(np.float32)
    for i, data in enumerate(loader):
        rgb, mask, vertex, vertex_weight, pose, gt_corners = data
        pts2d = gt_corners[0].numpy()[:, :2].astype(np.float32)

        pts3d = modeldb.get_extreme_3d('duck')
        pts3d = np.concatenate(
            [pts3d, modeldb.get_centers_3d('duck')[None, :]],
            0).astype(np.float32)
        wgt2d = np.zeros([pts2d.shape[0], 3]).astype(np.float32)
        wgt2d[:, (0, 2)] = 1.0

        for k in range(pts2d.shape[0]):
            if np.random.random() < 0.5:
                scale = np.random.uniform(1, 8)
Esempio n. 6
0
class Evaluator(object):
    def __init__(self):
        self.linemod_db = LineModModelDB()
        self.ycb_db = YCBModelDB()
        self.projector=Projector()
        self.projection_2d_recorder = Queue() # []
        self.add_recorder = Queue() # []
        self.cm_degree_5_recorder = Queue() # []
        self.proj_mean_diffs= Queue() # []
        self.add_dists= Queue() # []
        self.uncertainty_pnp_cost= Queue() # []
        self.add_dis = Queue() # []

    def projection_2d(self, pose_pred, pose_targets, model, K, threshold=5):
        model_2d_pred = self.projector.project_K(model, pose_pred, K)
        model_2d_targets = self.projector.project_K(model, pose_targets, K)
        proj_mean_diff=np.mean(np.linalg.norm(model_2d_pred - model_2d_targets, axis=-1))

        self.proj_mean_diffs.put(proj_mean_diff)
        self.projection_2d_recorder.put(proj_mean_diff < threshold)

    def projection_2d_sym(self, pose_pred, pose_targets, model, K, threshold=5):
        model_2d_pred = self.projector.project_K(model, pose_pred, K)
        model_2d_targets = self.projector.project_K(model, pose_targets, K)
        proj_mean_diff=np.mean(find_nearest_point_distance(model_2d_pred,model_2d_targets))

        self.proj_mean_diffs.put(proj_mean_diff)
        self.projection_2d_recorder.put(proj_mean_diff < threshold)

    def add_metric(self, pose_pred, pose_targets, model, diameter, percentage=0.1):
        """ ADD metric
        1. compute the average of the 3d distances between the transformed vertices
        2. pose_pred is considered correct if the distance is less than 10% of the object's diameter
        """
        diameter = diameter * percentage
        model_pred = np.dot(model, pose_pred[:, :3].T) + pose_pred[:, 3]
        model_targets = np.dot(model, pose_targets[:, :3].T) + pose_targets[:, 3]

        mean_dist=np.mean(np.linalg.norm(model_pred - model_targets, axis=-1))
        self.add_dis.put(mean_dist)
        self.add_recorder.put(mean_dist < diameter)
        self.add_dists.put(mean_dist)
        return mean_dist

    def add_metric_sym(self, pose_pred, pose_targets, model, diameter, percentage=0.1):
        """ ADD metric
        1. compute the average of the 3d distances between the transformed vertices
        2. pose_pred is considered correct if the distance is less than 10% of the object's diameter
        """
        diameter = diameter * percentage
        model_pred = np.dot(model, pose_pred[:, :3].T) + pose_pred[:, 3]
        model_targets = np.dot(model, pose_targets[:, :3].T) + pose_targets[:, 3]

        mean_dist=np.mean(find_nearest_point_distance(model_pred,model_targets))
        self.add_dis.put(mean_dist)
        self.add_recorder.put(mean_dist < diameter)
        self.add_dists.put(mean_dist)
        return mean_dist

    def cm_degree_5_metric(self, pose_pred, pose_targets):
        """ 5 cm 5 degree metric
        1. pose_pred is considered correct if the translation and rotation errors are below 5 cm and 5 degree respectively
        """
        translation_distance = np.linalg.norm(pose_pred[:, 3] - pose_targets[:, 3]) * 100
        rotation_diff = np.dot(pose_pred[:, :3], pose_targets[:, :3].T)
        trace = np.trace(rotation_diff)
        trace = trace if trace <= 3 else 3
        angular_distance = np.rad2deg(np.arccos((trace - 1.) / 2.))
        self.cm_degree_5_recorder.put(translation_distance < 5 and angular_distance < 5)

    def evaluate_3dkp_adds(
            self, dt_p3d, pose_targets, class_type, intri_type='blender',
            vote_type=VotingType.Farthest, intri_matrix=None, use_ctr=False
    ):
        mdl_p3d = VotingType.get_pts_3d(vote_type, class_type)

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        if use_ctr:
            pose_pred = best_fit_transform(mdl_p3d, dt_p3d)
        else:
            pose_pred = best_fit_transform(mdl_p3d[:8], dt_p3d)
        # pose_pred = pnp(points_3d, points_2d, K)
        model = self.linemod_db.get_ply_model(class_type)
        diameter = self.linemod_db.get_diameter(class_type)

        self.add_metric_sym(pose_pred, pose_targets, model, diameter)

        self.projection_2d(pose_pred, pose_targets, model, K)
        self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred

    def evaluate_3dkp(
            self, dt_p3d, pose_targets, class_type, intri_type='blender',
            vote_type=VotingType.Farthest, intri_matrix=None, use_ctr=False
    ):
        mdl_p3d = VotingType.get_pts_3d(vote_type, class_type)

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        if use_ctr:
            pose_pred = best_fit_transform(mdl_p3d, dt_p3d)
        else:
            pose_pred = best_fit_transform(mdl_p3d[:8], dt_p3d)
        # pose_pred = pnp(points_3d, points_2d, K)
        model = self.linemod_db.get_ply_model(class_type)
        diameter = self.linemod_db.get_diameter(class_type)

        if class_type in ['eggbox','glue']:
            self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        else:
            self.add_metric(pose_pred, pose_targets, model, diameter)

        self.projection_2d(pose_pred, pose_targets, model, K)
        self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred

    def ycb_evaluate_RT(
            self, pose_pred, pose_targets, class_type, intri_type='ycb_K1',
            vote_type=VotingType.Farthest, intri_matrix=None
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(vote_type, class_type, use_ctr=True)

        model = self.ycb_db.get_pointxyz(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)

        mean_dis = self.add_metric_sym(pose_pred, pose_targets, model, diameter)

        return pose_pred, mean_dis, np.dot(mdl_p3d, pose_targets[:, :3].T) + pose_targets[:, 3]

    def ycb_evaluate_add_RT(
            self, pose_pred, pose_targets, class_type, intri_type='ycb_K1',
            vote_type=VotingType.Farthest, intri_matrix=None
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(vote_type, class_type, use_ctr=True)

        model = self.ycb_db.get_pointxyz(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)
        mean_dis = self.add_metric(pose_pred, pose_targets, model, diameter)

        return pose_pred, mean_dis, np.dot(mdl_p3d, pose_targets[:, :3].T) + pose_targets[:, 3]

    def ycb_evaluate_3dkp_ctr(
            self, dt_p3d, pose_targets, class_type, intri_type='ycb_K1',
            vote_type=VotingType.Farthest, intri_matrix=None, use_ctr=True
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(
            vote_type, class_type, use_ctr=use_ctr
        )

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        pose_pred = best_fit_transform(mdl_p3d, dt_p3d)
        # pose_pred = pnp(points_3d, points_2d, K)
        model = self.ycb_db.get_pointxyz(class_type)
        # model = self.ycb_db.get_ply_model(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)
        symetry_ycb_cls = [
            '024_bowl','036_wood_block', '051_large_clamp',
            '052_extra_large_clamp', '061_foam_brick'
        ]

        mean_dis = self.add_metric_sym(pose_pred, pose_targets, model, diameter)

        # self.projection_2d(pose_pred, pose_targets, model, K)
        # self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred, mean_dis, np.dot(mdl_p3d, pose_targets[:, :3].T) + pose_targets[:, 3]

    def ycb_evaluate_add_3dkp_ctr(
            self, dt_p3d, pose_targets, class_type, intri_type='ycb_K1',
            vote_type=VotingType.Farthest, intri_matrix=None, use_ctr=True
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(
            vote_type, class_type, use_ctr=use_ctr
        )

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        pose_pred = best_fit_transform(mdl_p3d, dt_p3d)
        # pose_pred = pnp(points_3d, points_2d, K)
        model = self.ycb_db.get_pointxyz(class_type)
        # model = self.ycb_db.get_ply_model(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)

        mean_dis = self.add_metric(pose_pred, pose_targets, model, diameter)
        # if class_type in symetry_ycb_cls:
        #     self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        # else:
        #     self.add_metric(pose_pred, pose_targets, model, diameter)

        # self.projection_2d(pose_pred, pose_targets, model, K)
        # self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred, mean_dis, np.dot(mdl_p3d, pose_targets[:, :3].T) + pose_targets[:, 3]

    def ycb_evaluate_2dkp_ctr(
            self, dt_p2d, pose_targets, class_type, intri_type='ycb_K1',
            vote_type=VotingType.Farthest, intri_matrix=None, use_ctr=True
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(
            vote_type, class_type, use_ctr=use_ctr
        )

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        # pose_pred = best_fit_transform(mdl_p3d, dt_p3d)
        pose_pred = pnp(mdl_p3d, dt_p2d, K)
        model = self.ycb_db.get_pointxyz(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)
        symetry_ycb_cls = [
            '024_bowl','036_wood_block', '051_large_clamp',
            '052_extra_large_clamp', '061_foam_brick'
        ]

        mean_dis = self.add_metric_sym(pose_pred, pose_targets, model, diameter)

        # self.projection_2d(pose_pred, pose_targets, model, K)
        # self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred, mean_dis, np.dot(mdl_p3d, pose_targets[:, :3].T) + pose_targets[:, 3]

    def ycb_evaluate_add_2dkp_ctr(
            self, dt_p2d, pose_targets, class_type, intri_type='ycb_K1',
            vote_type=VotingType.Farthest, intri_matrix=None, use_ctr=True
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(vote_type, class_type, use_ctr=True)

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        # pose_pred = best_fit_transform(mdl_p3d, dt_p3d)
        pose_pred = pnp(mdl_p3d, dt_p2d, K)
        model = self.ycb_db.get_pointxyz(class_type)
        # model = self.ycb_db.get_ply_model(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)

        mean_dis = self.add_metric(pose_pred, pose_targets, model, diameter)
        # self.projection_2d(pose_pred, pose_targets, model, K)
        # self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred, mean_dis, np.dot(mdl_p3d, pose_targets[:, :3].T) + pose_targets[:, 3]

    def ycb_evaluate_3dkp(
            self, dt_p3d, pose_targets, class_type, intri_type='ycb_K1',
            vote_type=VotingType.Farthest, intri_matrix=None
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(vote_type, class_type)

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        pose_pred = best_fit_transform(mdl_p3d[:8], dt_p3d)
        # pose_pred = pnp(points_3d, points_2d, K)
        model = self.ycb_db.get_pointxyz(class_type)
        # model = self.ycb_db.get_ply_model(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)
        symetry_ycb_cls = [
            '024_bowl','036_wood_block', '051_large_clamp',
            '052_extra_large_clamp', '061_foam_brick'
        ]

        mean_dis = self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        # if class_type in symetry_ycb_cls:
        #     self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        # else:
        #     self.add_metric(pose_pred, pose_targets, model, diameter)

        # self.projection_2d(pose_pred, pose_targets, model, K)
        # self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred, mean_dis, np.dot(mdl_p3d, pose_targets[:, :3].T) + pose_targets[:, 3]

    def ycb_evaluate_3dkp_add(
            self, dt_p3d, pose_targets, class_type, intri_type='ycb_K1',
            vote_type=VotingType.Farthest, intri_matrix=None
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(vote_type, class_type)

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        pose_pred = best_fit_transform(mdl_p3d[:8], dt_p3d)
        # pose_pred = pnp(points_3d, points_2d, K)
        model = self.ycb_db.get_pointxyz(class_type)
        # model = self.ycb_db.get_ply_model(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)
        symetry_ycb_cls = [
            '024_bowl','036_wood_block', '051_large_clamp',
            '052_extra_large_clamp', '061_foam_brick'
        ]

        mean_dis = self.add_metric(pose_pred, pose_targets, model, diameter)
        # if class_type in symetry_ycb_cls:
        #     self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        # else:
        #     self.add_metric(pose_pred, pose_targets, model, diameter)

        # self.projection_2d(pose_pred, pose_targets, model, K)
        # self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred, mean_dis, np.dot(mdl_p3d, pose_targets[:, :3].T) + pose_targets[:, 3]

    def ycb_evaluate_3dkp_3pt(
            self, dt_p3d, good_idx, pose_targets, class_type,
            intri_type='ycb_K1', vote_type=VotingType.Farthest, intri_matrix=None
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(vote_type, class_type)
        mdl_p3d = mdl_p3d[good_idx]

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        pose_pred = best_fit_transform(mdl_p3d, dt_p3d)
        # pose_pred = pnp(points_3d, points_2d, K)
        model = self.ycb_db.get_ply_model(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)
        symetry_ycb_cls = [
            '024_bowl','036_wood_block', '051_large_clamp',
            '052_extra_large_clamp', '061_foam_brick'
        ]

        mean_dis = self.add_metric_sym_psl(pose_pred_lst, pose_targets, model, diameter)
        # if class_type in symetry_ycb_cls:
        #     self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        # else:
        #     self.add_metric(pose_pred, pose_targets, model, diameter)

        self.projection_2d(pose_pred, pose_targets, model, K)
        self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred, mean_dis, np.dot(mdl_p3d, pose_targets[:, :3].T) + pose_targets[:, 3]

    def ycb_evaluate_3dkp_cmbn(
            self, dt_p3d, pose_targets, class_type, intri_type='ycb_K1',
            vote_type=VotingType.Farthest, intri_matrix=None
    ):
        mdl_p3d = VotingType.ycb_get_pts_3d(vote_type, class_type)

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        cmbn_lst = list(
            itertools.combinations([i for i in range(dt_p3d.shape[0])], 3)
        )

        pose_pred_lst = []
        for i in range(len(cmbn_lst)):
            pose_pred = best_fit_transform(mdl_p3d[cmbn_lst[i]], dt_p3d[cmbn_lst[i]])
            pose_pred_lst.append(pose_pred)
        # pose_pred = pnp(points_3d, points_2d, K)
        model = self.ycb_db.get_ply_model(class_type)
        diameter = 0.02 * 10.0# self.ycb_db.get_diameter(class_type)
        symetry_ycb_cls = [
            '024_bowl','036_wood_block', '051_large_clamp',
            '052_extra_large_clamp', '061_foam_brick'
        ]

        self.add_metric_sym_psl(pose_pred_lst, pose_targets, model, diameter)
        # if class_type in symetry_ycb_cls:
        #     self.add_metric_sym_psl(pose_pred_lst, pose_targets, model, diameter)
        # else:
        #     self.add_metric_psl(pose_pred_lst, pose_targets, model, diameter)

        self.projection_2d(pose_pred, pose_targets, model, K)
        self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred

    def evaluate(self, points_2d, pose_targets, class_type, intri_type='blender', vote_type=VotingType.BB8, intri_matrix=None):
        points_3d = VotingType.get_pts_3d(vote_type, class_type)

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        pose_pred = best_fit_transform(mdl_p3d, dt_p3d)
        # pose_pred = pnp(points_3d, points_2d, K)
        model = self.linemod_db.get_ply_model(class_type)
        diameter = self.linemod_db.get_diameter(class_type)

        if class_type in ['eggbox','glue']:
            self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        else:
            self.add_metric(pose_pred, pose_targets, model, diameter)

        self.projection_2d(pose_pred, pose_targets, model, K)
        self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred

    def evaluate_uncertainty(self, mean_pts2d, covar, pose_targets, class_type,
                             intri_type='blender', vote_type=VotingType.BB8,intri_matrix=None):
        points_3d=VotingType.get_pts_3d(vote_type,class_type)

        begin=time.time()
        # full
        cov_invs = []
        for vi in range(covar.shape[0]):
            if covar[vi,0,0]<1e-6 or np.sum(np.isnan(covar)[vi])>0:
                cov_invs.append(np.zeros([2,2]).astype(np.float32))
                continue

            cov_inv = np.linalg.inv(scipy.linalg.sqrtm(covar[vi]))
            cov_invs.append(cov_inv)
        cov_invs = np.asarray(cov_invs)  # pn,2,2
        weights = cov_invs.reshape([-1, 4])
        weights = weights[:, (0, 1, 3)]

        if intri_type=='use_intrinsic' and intri_matrix is not None:
            K=intri_matrix
        else:
            K=self.projector.intrinsic_matrix[intri_type]

        pose_pred = uncertainty_pnp(mean_pts2d, weights, points_3d, K)
        model = self.linemod_db.get_ply_model(class_type)
        diameter = self.linemod_db.get_diameter(class_type)
        self.uncertainty_pnp_cost.put(time.time()-begin)

        if class_type in ['eggbox','glue']:
            self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        else:
            self.add_metric(pose_pred, pose_targets, model, diameter)

        self.projection_2d(pose_pred, pose_targets, model, K)
        self.cm_degree_5_metric(pose_pred, pose_targets)

        return pose_pred

    def evaluate_uncertainty_v2(self, mean_pts2d, covar, pose_targets, class_type,
                             intri_type='blender', vote_type=VotingType.BB8):
        points_3d = VotingType.get_pts_3d(vote_type, class_type)

        pose_pred = uncertainty_pnp_v2(mean_pts2d, covar, points_3d, self.projector.intrinsic_matrix[intri_type])
        model = self.linemod_db.get_ply_model(class_type)
        diameter = self.linemod_db.get_diameter(class_type)

        if class_type in ['eggbox','glue']:
            self.projection_2d_sym(pose_pred, pose_targets, model, self.projector.intrinsic_matrix[intri_type])
            self.add_metric_sym(pose_pred, pose_targets, model, diameter)
        else:
            self.projection_2d(pose_pred, pose_targets, model, self.projector.intrinsic_matrix[intri_type])
            self.add_metric(pose_pred, pose_targets, model, diameter)
        self.cm_degree_5_metric(pose_pred, pose_targets)

    def cal_auc(self, add_dis):
        max_dis = 0.1
        D = np.array(add_dis)
        D[np.where(D > max_dis)] = np.inf;
        D = np.sort(D)
        n = len(add_dis)
        acc = np.cumsum(np.ones((1,n)), dtype=np.float32) / n
        aps = self.VOCap(D, acc)
        return aps * 100

    def VOCap(self, rec, prec):
        idx = np.where(rec != np.inf)
        if len(idx[0]) == 0:
            return 0
        rec = rec[idx]
        prec = prec[idx]
        mrec = np.array([0.0]+list(rec)+[0.1])
        mpre = np.array([0.0]+list(prec)+[prec[-1]])
        for i in range(1, prec.shape[0]):
            mpre[i] = max(mpre[i], mpre[i-1])
        i = np.where(mrec[1:] != mrec[0:-1])[0] + 1
        ap = np.sum((mrec[i] - mrec[i-1]) * mpre[i]) * 10
        return ap

    def average_precision(self,verbose=True, n_none=0):
        self.proj_mean_diffs = list(self.proj_mean_diffs.queue)
        np.save('tmp.npy',np.asarray(self.proj_mean_diffs))
        print("n_none: ", n_none)
        for i in range(n_none):
            self.projection_2d_recorder.put(0)
            self.add_recorder.put(0)
            self.add_dis.put(np.inf)
            self.cm_degree_5_recorder.put(0)
        self.projection_2d_recorder = list(self.projection_2d_recorder.queue)
        self.add_recorder = list(self.add_recorder.queue)
        self.add_dis = list(self.add_dis.queue)
        self.cm_degree_5_recorder = list(self.cm_degree_5_recorder.queue)

        if len(self.add_dis) > 2:
            auc = self.cal_auc(self.add_dis)
        else:
            auc = 0
        if verbose:
            print('2d projections metric: {}'.format(np.mean(self.projection_2d_recorder)))
            print('ADD metric: {}'.format(np.mean(self.add_recorder)))
            print('5 cm 5 degree metric: {}'.format(np.mean(self.cm_degree_5_recorder)))
            print('AUC: {}'.format(auc))

        return np.mean(self.projection_2d_recorder),np.mean(self.add_recorder),np.mean(self.cm_degree_5_recorder), auc