def pretrain():

    train = FabricDataset(root='./data/X_fabric_data/tr/')
    test = FabricDataset(root='./data/X_fabric_data/te/')
    train = DataLoader(train, batch_size=128, shuffle=True, num_workers=4)
    test = DataLoader(test, batch_size=128, shuffle=True, num_workers=4)

    MAX_EPOCHES = 20
    lr = 0.1

    model = fabric()

    model = model.to(device)
    if cuda.is_available():
        model = torch.nn.DataParallel(model)
    opt1 = torch.optim.Adam(model.parameters())
    criterion = nn.CrossEntropyLoss()

    for epoch in range(MAX_EPOCHES):
        for xx, xt, Y in train:

            xx = xx.to(device)
            xt = xt.to(device)
            c = model(xx, xt)

            Y = Y.to(device)
            loss = criterion(c, Y)

            opt1.zero_grad()
            loss.backward()

            opt1.step()
            print(loss.item())

        with torch.no_grad():

            right = 0
            su = 0
            for xx, xt, Y in test:
                xx = xx.to(device)
                xt = xt.to(device)
                c = model(xx, xt)
                su = su + Y.shape[0]

                right = right + (c.argmax(dim=1)
                                 == Y.to(device)).float().sum().cpu().item()

            print('test', epoch, right / su)
    if cuda.is_available():
        return model.module.feature
    else:
        return model.feature
def finetune(feature):

    xxx = torchvision.models.resnet18(num_classes=4)

    classifier = xxx.fc

    train = FabricDataset(root='./data/DIY_fabric_data/tr/')
    test = FabricDataset(root='./data/DIY_fabric_data/te/')
    train = DataLoader(train, batch_size=128, shuffle=True, num_workers=4)
    test = DataLoader(test, batch_size=128, shuffle=True, num_workers=4)

    MAX_EPOCHES = 30
    lr = 0.1

    feature = feature.to(device)
    classifier = classifier.to(device)
    if cuda.is_available():
        feature = torch.nn.DataParallel(feature)
        classifier = torch.nn.DataParallel(classifier)

    opt1 = torch.optim.Adam([{
        'params': feature.parameters(),
        'lr': 0.0001
    }, {
        'params': classifier.parameters(),
        'lr': 0.01
    }])
    criterion = nn.CrossEntropyLoss()
    avgpool = xxx.avgpool
    for epoch in range(MAX_EPOCHES):
        for xx, xt, Y in train:

            xx = xx.to(device)
            xt = xt.to(device)

            y = feature(xx)
            ytemp = feature(xt)
            y = avgpool(y)
            ytemp = avgpool(ytemp)
            c = classifier(torch.flatten(y - ytemp, 1))

            Y[Y == 1] = 0
            Y[Y == 2] = 1
            Y[Y == 5] = 2
            Y[Y == 13] = 3
            Y = Y.to(device)
            loss = criterion(c, Y)

            opt1.zero_grad()
            loss.backward()

            opt1.step()
            print(loss.item())

        with torch.no_grad():

            right = 0
            su = 0
            for xx, xt, Y in test:
                xx = xx.to(device)
                xt = xt.to(device)

                y = feature(xx)
                ytemp = feature(xt)
                y = avgpool(y)
                ytemp = avgpool(ytemp)
                c = classifier(torch.flatten(y - ytemp, 1))
                su = su + Y.shape[0]

                Y[Y == 1] = 0
                Y[Y == 2] = 1
                Y[Y == 5] = 2
                Y[Y == 13] = 3
                right = right + (c.argmax(dim=1)
                                 == Y.to(device)).float().sum().cpu().item()

            print('test', epoch, right / su)
        self.fc = nn.Linear(512 * 7 * 7, 4)

    def forward(self, xx, xt):
        y = self.pretrained(xx)
        ytemp = self.pretrained(xt)
        c = self.fc(torch.flatten(y-ytemp, 1))
        return c


if __name__ == "__main__":
    # tainsform未生效
    transform = transforms.Compose([transforms.ToTensor(),
                                    transforms.Resize((224, 224)),
                                    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

    train = FabricDataset(root='./data/DIY_fabric_data/tr/')
    test = FabricDataset(root='./data/DIY_fabric_data/te/')
    train = DataLoader(train, batch_size=128, shuffle=True, num_workers=4)
    test = DataLoader(test, batch_size=128, shuffle=True, num_workers=4)

    MAX_EPOCHES = 100
    lr = 0.1

    model = fabric()
    model = model.to(device)
    if cuda.is_available():
        model = torch.nn.DataParallel(model)
    '''
    opt1=torch.optim.Adam([
            {'params':model.module.pretrained.parameters(),'lr':0.000001},
            
Esempio n. 4
0
def finetune(feature, f2):

    train = FabricDataset(root='./data/DIY_fabric_data/tr/')
    test = FabricDataset(root='./data/DIY_fabric_data/te/')
    train = DataLoader(train, batch_size=128, shuffle=True, num_workers=4)
    test = DataLoader(test, batch_size=128, shuffle=True, num_workers=4)

    MAX_EPOCHES = 30
    lr = 0.1

    classifier = nn.Sequential(
        nn.Dropout(),
        nn.Linear(256 * 12 * 6, 4096),
        nn.ReLU(inplace=True),
        nn.Dropout(),
        nn.Linear(4096, 4096),
        nn.ReLU(inplace=True),
        nn.Linear(4096, 4),
    )
    feature = feature.to(device)
    f2 = f2.to(device)
    classifier = classifier.to(device)
    if cuda.is_available():
        feature = torch.nn.DataParallel(feature)
        f2 = torch.nn.DataParallel(f2)
        classifier = torch.nn.DataParallel(classifier)

    opt1 = torch.optim.Adam([{
        'params': feature.parameters(),
        'lr': 0.0001
    }, {
        'params': classifier.parameters(),
        'lr': 0.01
    }])
    criterion = nn.CrossEntropyLoss()
    avgpool = torchvision.models.AlexNet(4).avgpool
    for epoch in range(MAX_EPOCHES):
        for xx, xt, Y in train:

            xx = xx.to(device)
            xt = xt.to(device)

            y1 = feature(xx)
            ytemp1 = feature(xt)
            y2 = f2(y1)
            ytemp2 = f2(ytemp1)
            y1 = avgpool(y1)
            ytemp1 = avgpool(ytemp1)
            y2 = avgpool(y2)
            ytemp2 = avgpool(ytemp2)
            c = classifier(
                torch.cat((torch.flatten(
                    y1 - ytemp1, 1), torch.flatten(y2 - ytemp2, 1)), 1))

            Y[Y == 1] = 0
            Y[Y == 2] = 1
            Y[Y == 5] = 2
            Y[Y == 13] = 3
            Y = Y.to(device)
            loss = criterion(c, Y)

            opt1.zero_grad()
            loss.backward()

            opt1.step()
            print(loss.item())

        with torch.no_grad():

            right = 0
            su = 0
            for xx, xt, Y in test:
                xx = xx.to(device)
                xt = xt.to(device)

                y1 = feature(xx)
                ytemp1 = feature(xt)
                y2 = f2(y1)
                ytemp2 = f2(ytemp1)
                y1 = avgpool(y1)
                ytemp1 = avgpool(ytemp1)
                y2 = avgpool(y2)
                ytemp2 = avgpool(ytemp2)
                c = classifier(
                    torch.cat((torch.flatten(
                        y1 - ytemp1, 1), torch.flatten(y2 - ytemp2, 1)), 1))

                su = su + Y.shape[0]

                Y[Y == 1] = 0
                Y[Y == 2] = 1
                Y[Y == 5] = 2
                Y[Y == 13] = 3
                right = right + (c.argmax(dim=1)
                                 == Y.to(device)).float().sum().cpu().item()

            print('test', epoch, right / su)