Esempio n. 1
0
    def process(self):
        # Original & LowMem models go with Adjust or Masked converter
        # GAN converter & model must go together
        # Note: GAN prediction outputs a mask + an image, while other predicts only an image
        model_name = self.arguments.trainer
        conv_name = self.arguments.converter

        if conv_name.startswith("GAN"):
            assert model_name.startswith(
                "GAN"
            ) is True, "GAN converter can only be used with GAN model!"
        else:
            assert model_name.startswith(
                "GAN"
            ) is False, "GAN model can only be used with GAN converter!"

        model = PluginLoader.get_model(model_name)(get_folder(
            self.arguments.model_dir))
        if not model.load(self.arguments.swap_model):
            print(
                'Model Not Found! A valid model must be provided to continue!')
            exit(1)

        converter = PluginLoader.get_converter(conv_name)(
            model.converter(False),
            blur_size=self.arguments.blur_size,
            seamless_clone=self.arguments.seamless_clone,
            mask_type=self.arguments.mask_type,
            erosion_kernel_size=self.arguments.erosion_kernel_size,
            smooth_mask=self.arguments.smooth_mask,
            avg_color_adjust=self.arguments.avg_color_adjust)

        batch = BackgroundGenerator(self.prepare_images(), 1)

        # frame ranges stuff...
        self.frame_ranges = None

        # split out the frame ranges and parse out "min" and "max" values
        minmax = {
            "min": 0,  # never any frames less than 0
            "max": float("inf")
        }

        if self.arguments.frame_ranges:
            self.frame_ranges = [
                tuple(
                    map(lambda q: minmax[q] if q in minmax.keys() else int(q),
                        v.split("-"))) for v in self.arguments.frame_ranges
            ]

        # last number regex. I know regex is hacky, but its reliablyhacky(tm).
        self.imageidxre = re.compile(r'(\d+)(?!.*\d)')

        for item in batch.iterator():
            self.convert(converter, item)
Esempio n. 2
0
    def process(self):
        self.convert_cache = self.input_A_path + '_convert'
        try:
            os.mkdir(self.convert_cache)
        except:
            import shutil
            shutil.rmtree(self.convert_cache)
            os.mkdir(self.convert_cache)

        # model_name = 'Original'
        # conv_name = 'Masked' #'Masked'
        # model = PluginLoader.get_model(model_name)(self.model_path)
        model = Model_Original.Model(self.model_path)

        if not model.load(swapped = True):
            exit(1)

        converter = Convert_Masked.Convert(model.converter(False),
                              blur_size=2,
                              seamless_clone=True,
                              mask_type="facehullandrect",
                              erosion_kernel_size=None,
                              smooth_mask=True,
                              avg_color_adjust=True
                                                          )

        batch = BackgroundGenerator(self.prepare_images(), 1)

        self.frame_ranges = None
        minmax = {
            "min": 0, # never any frames less than 0
            "max": float("inf")
        }
        if self.frame_ranges:
            self.frame_ranges = [tuple(map(lambda q: minmax[q] if q in minmax.keys() else int(q), v.split("-"))) for v in self.arguments.frame_ranges]
        self.imageidxre = re.compile(r'(\d+)(?!.*\d)')
        try:
            for item in batch.iterator():
                if not self.state.empty():
                    if self.state.get() == 'stop_con':
                        print('取消合成,正在清理缓存文件')
                        break
                    else:
                        self.convert(converter, item)
                else:
                    self.convert(converter, item)
        finally:
            keras.backend.clear_session()
Esempio n. 3
0
    def process(self):
        # Original model goes with Adjust or Masked converter
        # does the LowMem one work with only one?
        # seems to work with both in testing - although Adjust with LowMem
        # looks a real mess - you can see that it is "working"
        model_name = self.arguments.trainer
        conv_name = self.arguments.converter

        model = PluginLoader.get_model(model_name)(self.arguments.model_dir)
        if not model.load(self.arguments.swap_model):
            print(
                'Model Not Found! A valid model must be provided to continue!')
            exit(1)

        converter = PluginLoader.get_converter(conv_name)(
            model.converter(False),
            blur_size=self.arguments.blur_size,
            seamless_clone=self.arguments.seamless_clone,
            mask_type=self.arguments.mask_type,
            erosion_kernel_size=self.arguments.erosion_kernel_size,
            smooth_mask=self.arguments.smooth_mask,
            avg_color_adjust=self.arguments.avg_color_adjust)

        batch = BackgroundGenerator(self.prepare_images(), 1)

        # frame ranges stuff...
        self.frame_ranges = None

        # split out the frame ranges and parse out "min" and "max" values
        minmax = {
            "min": 0,  # never any frames less than 0
            "max": float("inf")
        }

        if self.arguments.frame_ranges:
            self.frame_ranges = [
                tuple(
                    map(lambda q: minmax[q] if q in minmax.keys() else int(q),
                        v.split("-"))) for v in self.arguments.frame_ranges
            ]

        # last number regex. I know regex is hacky, but its reliablyhacky(tm).
        self.imageidxre = re.compile(r'(\d+)(?!.*\d)')

        for item in batch.iterator():
            self.convert(converter, item)
Esempio n. 4
0
    def process(self):
        # Original model goes with Adjust or Masked converter
        model_name = "Original"  # TODO Pass as argument
        conv_name = "Masked"  # TODO Pass as argument

        model = PluginLoader.get_model(model_name)(self.arguments.model_dir)
        if not model.load(self.arguments.swap_model):
            print(
                'Model Not Found! A valid model must be provided to continue!')
            exit(1)

        converter = PluginLoader.get_converter(conv_name)(
            model.converter(False))

        batch = BackgroundGenerator(self.prepare_images(), 1)
        for item in batch.iterator():
            self.convert(converter, item)
Esempio n. 5
0
    def process(self):
    	model_name = self.arguments.trainer
    	conv_name = self.arguments.converter

    	if conv_name.startswith("GAN"):
    		assert  model_name.startswith("GAN") is True, "GAN converter can only be used with GAN model"
    	else:
    		assert model_name.startswith("GAN") is False, "GAN model can only be used with GAN Converter"


    	model = PluginLoader.get_model(model_name)(get_folder(self.arguments.model_dir))

    	if not model.load(self.arguments.swap_model):
    		print("Model Not Found! A valid model must be provided to continue!")
    		exit(1)

    	converter = PluginLoader.get_converter(conv_name)(model.converter(False),
    		blur_size = self.arguments.blur_size,
    		seamless_clone=self.arguments.seamless_clone,
    		mask_type=self.arguments.mask_type,
    		erosion_kernel_size=self.arguments.erosion_kernel_size,
    		smooth_mask=self.arguments.smooth_mask,
    		avg_color_adjust=self.arguments.avg_color_adjust)

    	batch = BackgroundGenerator(self.prepare_images(),1)

    	#frame ranges stuffs
    	self.frame_ranges = None 

    	minmax = {
    		"min":0,
    		"max":float("inf")
    	}

    	if self.arguments.frame_ranges:
    		self.frame_ranges = [tuple(map(lamda q: minmax[q] if q in minmax.keys() else int(q),v.split("-"))) for v in self.arguments.frame_ranges]


    	self.imageidxre - re.compile(r'(\d+)(?!.*\d)')

    	for item in batch.iterator():
    		self.convert(converter,item)
Esempio n. 6
0
    def process(self):
        """ Original & LowMem models go with Adjust or Masked converter
            Note: GAN prediction outputs a mask + an image, while other predicts only an image """
        Utils.set_verbosity(self.args.verbose)

        if not self.alignments.have_alignments_file:
            self.generate_alignments()

        self.faces.faces_detected = self.alignments.read_alignments()

        model = self.load_model()
        converter = self.load_converter(model)

        batch = BackgroundGenerator(self.prepare_images(), 1)

        for item in batch.iterator():
            self.convert(converter, item)

        Utils.finalize(self.images.images_found,
                       self.faces.num_faces_detected,
                       self.faces.verify_output)
Esempio n. 7
0
    def process(self):
        """ Original & LowMem models go with Adjust or Masked converter

            Note: GAN prediction outputs a mask + an image, while other
            predicts only an image. """
        Utils.set_verbosity(self.args.verbose)

        if not self.alignments.have_alignments_file:
            self.generate_alignments()

        self.faces.faces_detected = self.alignments.read_alignments()

        model = self.load_model()
        converter = self.load_converter(model)

        batch = BackgroundGenerator(self.prepare_images(), 1)

        for item in batch.iterator():
            self.convert(converter, item)

        Utils.finalize(self.images.images_found,
                       self.faces.num_faces_detected,
                       self.faces.verify_output)
Esempio n. 8
0
    def process(self):
        # Original model goes with Adjust or Masked converter
        # does the LowMem one work with only one?
        model_name = "Original" # TODO Pass as argument
        conv_name = self.arguments.converter
        
        model = PluginLoader.get_model(model_name)(self.arguments.model_dir)
        if not model.load(self.arguments.swap_model):
            print('Model Not Found! A valid model must be provided to continue!')
            exit(1)

        converter = PluginLoader.get_converter(conv_name)(model.converter(False),
            blur_size=self.arguments.blur_size,
            seamless_clone=self.arguments.seamless_clone,
            mask_type=self.arguments.mask_type,
            erosion_kernel_size=self.arguments.erosion_kernel_size,
            smooth_mask=self.arguments.smooth_mask,
            avg_color_adjust=self.arguments.avg_color_adjust
        )

        batch = BackgroundGenerator(self.prepare_images(), 1)

        # frame ranges stuff...
        self.frame_ranges = None
        # split out the frame ranges and parse out "min" and "max" values
        minmax = {
            "min": 0, # never any frames less than 0
            "max": float("inf")
        }
        if self.arguments.frame_ranges:
            self.frame_ranges = [tuple(map(lambda q: minmax[q] if q in minmax.keys() else int(q), v.split("-"))) for v in self.arguments.frame_ranges]

        # last number regex. I know regex is hacky, but its reliablyhacky(tm).
        self.imageidxre = re.compile(r'(\d+)(?!.*\d)')

        for item in batch.iterator():
            self.convert(converter, item)
Esempio n. 9
0
    def process(self):
        # Original & LowMem models go with Adjust or Masked converter
        # Note: GAN prediction outputs a mask + an image, while other predicts only an image
        model_name = self.arguments.trainer
        conv_name = self.arguments.converter
        self.input_aligned_dir = None

        model = PluginLoader.get_model(model_name)(get_folder(
            self.arguments.model_dir))
        if not model.load(self.arguments.swap_model):
            print(
                'Model Not Found! A valid model must be provided to continue!')
            exit(1)

        input_aligned_dir = Path(self.arguments.input_dir) / Path('aligned')
        if self.arguments.input_aligned_dir is not None:
            input_aligned_dir = self.arguments.input_aligned_dir
        try:
            self.input_aligned_dir = [
                Path(path) for path in get_image_paths(input_aligned_dir)
            ]
            if len(self.input_aligned_dir) == 0:
                print(
                    'Aligned directory is empty, no faces will be converted!')
            elif len(self.input_aligned_dir) <= len(self.input_dir) / 3:
                print(
                    'Aligned directory contains an amount of images much less than the input, are you sure this is the right directory?'
                )
        except:
            print(
                'Aligned directory not found. All faces listed in the alignments file will be converted.'
            )

        converter = PluginLoader.get_converter(conv_name)(
            model.converter(False),
            trainer=self.arguments.trainer,
            blur_size=self.arguments.blur_size,
            seamless_clone=self.arguments.seamless_clone,
            mask_type=self.arguments.mask_type,
            erosion_kernel_size=self.arguments.erosion_kernel_size,
            match_histogram=self.arguments.match_histogram,
            smooth_mask=self.arguments.smooth_mask,
            avg_color_adjust=self.arguments.avg_color_adjust)

        batch = BackgroundGenerator(self.prepare_images(), 1)

        # frame ranges stuff...
        self.frame_ranges = None

        # split out the frame ranges and parse out "min" and "max" values
        minmax = {
            "min": 0,  # never any frames less than 0
            "max": float("inf")
        }

        if self.arguments.frame_ranges:
            self.frame_ranges = [
                tuple(
                    map(lambda q: minmax[q] if q in minmax.keys() else int(q),
                        v.split("-"))) for v in self.arguments.frame_ranges
            ]

        # last number regex. I know regex is hacky, but its reliablyhacky(tm).
        self.imageidxre = re.compile(r'(\d+)(?!.*\d)')

        for item in batch.iterator():
            self.convert(converter, item)