def __init__(self, opt, dicts): self.layers = opt.layers self.input_feed = opt.input_feed input_size = opt.word_vec_size if self.input_feed: input_size += opt.rnn_size super(TreeDecoder, self).__init__() self.word_lut = nn.Embedding(dicts.size(), opt.word_vec_size, padding_idx=lib.Constants.PAD) self.rnn = StackedLSTM(opt.layers, input_size, opt.rnn_size, opt.dropout) if opt.has_attn: self.attn = lib.GlobalAttention(opt.rnn_size) self.dropout = nn.Dropout(opt.dropout) self.hidden_size = opt.rnn_size self.opt = opt
def __init__(self, opt, dicts): self.layers = opt.layers self.input_feed = opt.input_feed input_size = opt.word_vec_size if self.input_feed: input_size += opt.rnn_size super(TreeDecoder_W2V, self).__init__() # self.word_lut = nn.Embedding(dicts.size(), opt.word_vec_size, padding_idx=lib.Constants.PAD) self.embeddings = gensim.models.Word2Vec.load(opt.embedding_w2v + 'processed_all.train_xe.comment.gz') self.rnn = StackedLSTM(opt.layers, input_size, opt.rnn_size, opt.dropout) if opt.has_attn: self.attn = lib.GlobalAttention(opt.rnn_size) self.dropout = nn.Dropout(opt.dropout) self.hidden_size = opt.rnn_size self.opt = opt self.dicts = dicts