Esempio n. 1
0
def random_effect( df , group , X_cols , Y_cols ):
    """
    変量効果モデル(※ではない。今後修正)
    """
    fixed = _convert( df=df , group=group )
    params = {}
    for key , value in fixed.items():
        X = lib.df2mat( df=value , columns=X_cols )
        Y = lib.df2mat( df=value , columns=Y_cols )
        b = lib.reg( X=X , Y=Y )
        params[key] = b

    return params
Esempio n. 2
0
import lib
import sys
import numpy as np
"""
6 Inference2
"""
lib.title("#############6 Inference2#############")
#####データを読み取る#####
HPRICE_dataset = lib.load(filename="HPRICE1.csv")
explanatories = ["const", "sqrft", "bdrms"]
explained = ["lprice"]

#####各変数を定義#####
X = lib.df2mat(df=HPRICE_dataset, columns=explanatories)
Y = lib.df2mat(df=HPRICE_dataset, columns=explained)
b = lib.reg(X=X, Y=Y)
"""
6-1の解答
"""
lib.chaper("<6.1の解答>")
#####解答#####
lib.add_suffix(b, labels=explanatories)
print("\n")
"""
6-2の解答
"""
lib.chaper("<6.2の解答>")
#####回帰係数の取得#####
const, sqrft, bdrms = b[0], b[1], b[2]
y_bdrms = bdrms