Esempio n. 1
0
def ensure_np(amount):
    # Withdraws from the bank to get up at least [amount] NP.
    np = NeoPage()
    np.get('/bank.phtml')
    if np.contains('Collect Interest ('):
        bank_interest.bank_interest()
    nps = np.current_np()
    if nps >= amount: return
    need = amount - nps
    denom = 10**max(len(str(need)), len(str(amount)))
    need = (need // denom + 1) * denom
    np.post('/process_bank.phtml', 'type=withdraw', f'amount={need}')
    print(f'Withdrawing {need} NP')
Esempio n. 2
0
def ensure_np(amount):
    # Withdraws from the bank to get up at least [amount] NP.
    np = NeoPage()
    np.get('/bank.phtml')
    if np.contains('Collect Interest ('):
        bank_interest.bank_interest()
    nps = np.current_np()
    if nps >= amount: return
    need = amount - nps
    denom = 10**max(len(str(need)), len(str(amount)))
    need = (need // denom + 1) * denom
    np.post('/process_bank.phtml', 'type=withdraw', f'amount={need}')
    print(f'Withdrawing {need} NP')
Esempio n. 3
0
def shapeshifter(timeout=10 * 60):
    np = NeoPage()
    np.get(path_index)
    starting_np = np.current_np()
    if np.contains('Continue Game!'):
        np.get(path_game)
    elif np.contains('Start Game!'):
        np.post(path_process, f'type=init')

    # Just in case we won but left it in the completed state
    if np.contains('You Won!') or np.contains('You Lost!'):
        np.post(path_process + '?type=init')

    tbl = np.search(r'''<table border=1 bordercolor='gray'>(.*?)</table>''')[1]
    imgs = re.findall(
        r'''<img src='(.*?)' border=0 name='i_'>(<br><b><small>GOAL</small></b></td>)?''',
        tbl)
    imgs = imgs[:-1]
    N = len(imgs)
    goal_idx = next(i for i, (_, goal) in enumerate(imgs) if goal)
    to_idx = {img: i for i, (img, _) in enumerate(imgs)}

    tbl = np.search(
        r'''<table align=center cellpadding=0 cellspacing=0 border=0>(.*?)</table>'''
    )[1]
    goal_grid = []
    for row in re.findall(r'''<tr>(.*?)</tr>''', tbl, flags=re.DOTALL):
        imgs = re.findall(r'''<img src='(.*?)' .*?>''', row)
        goal_row = [to_idx[img] for img in imgs]
        goal_grid.append(goal_row)

    tbl = np.search(
        r'''<center><b><big>ACTIVE SHAPE</big></b><p>(.*?)</table>\n''')[1]
    shape_grids = []
    for shape_info in re.findall(r'''<table.*?>(.*?)</table>''', tbl):
        grid = []
        for row_info in re.findall(r'''<tr>(.*?)</tr>''', shape_info):
            tiles = re.findall(r'''<td.*?>(.*?)</td>''', row_info)
            grid.append(
                [int('square.gif' in tile_info) for tile_info in tiles])
        shape_grids.append(grid)

    # Compute kvho difficulty.
    R = len(goal_grid)
    C = len(goal_grid[0])
    min_shifts_needed = R * C * (N - 1) - sum(map(sum, goal_grid))
    shifts_available = sum(
        sum(sum(rows) for rows in grid) for grid in shape_grids)
    num_overshifts = shifts_available - min_shifts_needed
    num_flips = num_overshifts // N
    print(f'Puzzle permits {num_flips} flips ({num_overshifts} overshifts)')

    kvho_input = make_kvho_input(goal_grid, shape_grids, goal_idx)

    print(f'Waiting for kvho.')
    start_time = datetime.now()

    positions = []
    try:
        proc = subprocess.run(['c/ss'],
                              input=kvho_input,
                              encoding='utf-8',
                              capture_output=True,
                              timeout=timeout)
        for line in proc.stdout.splitlines():
            if 'x' in line and '=' in line:
                x = list(
                    map(
                        int,
                        line.replace('x', ' ').replace('=',
                                                       ' ').strip().split()))
                for c, r, _ in zip(x[::3], x[1::3], x[2::3]):
                    positions.append((r, c))
        print(f'Solution found in {datetime.now() - start_time}: {positions}')
    except subprocess.TimeoutExpired:
        print(
            f'Solution not found in time. Throwing this puzzle to get a new one.'
        )
        for _ in shape_grids:
            positions.append((0, 0))

    for i, (shape, (r, c)) in enumerate(zip(shape_grids, positions)):
        print(f'\rPlacing piece {i+1}/{len(positions)}', end='')
        np.set_referer_path(path_game)
        np.get(path_process, 'type=action', f'posx={c}', f'posy={r}')
        time.sleep(0.5)
    print()

    if np.contains('You Won!'):
        np.set_referer_path(path_game)
        np.post(path_process + '?type=init')
        ending_np = np.current_np()
        print(f'Done level, earned {ending_np - starting_np} NP')
        return 1
    elif np.contains('reached your max neopoints'):
        print('Done for today.')
        return 2
    else:
        print('Did not solve level??')
        return 0
Esempio n. 4
0
def shapeshifter(timeout=10*60):
    np = NeoPage()
    np.get(path_index)
    starting_np = np.current_np()
    if np.contains('Continue Game!'):
        np.get(path_game)
    elif np.contains('Start Game!'):
        np.post(path_process, f'type=init')

    # Just in case we won but left it in the completed state
    if np.contains('You Won!') or np.contains('You Lost!'):
        np.post(path_process + '?type=init')

    tbl = np.search(r'''<table border=1 bordercolor='gray'>(.*?)</table>''')[1]
    imgs = re.findall(r'''<img src='(.*?)' border=0 name='i_'>(<br><b><small>GOAL</small></b></td>)?''', tbl)
    imgs = imgs[:-1]
    N = len(imgs)
    goal_idx = next(i for i, (_, goal) in enumerate(imgs) if goal)
    to_idx = {img: i for i, (img, _) in enumerate(imgs)}

    tbl = np.search(r'''<table align=center cellpadding=0 cellspacing=0 border=0>(.*?)</table>''')[1]
    goal_grid = []
    for row in re.findall(r'''<tr>(.*?)</tr>''', tbl, flags=re.DOTALL):
        imgs = re.findall(r'''<img src='(.*?)' .*?>''', row)
        goal_row = [to_idx[img] for img in imgs]
        goal_grid.append(goal_row)

    tbl = np.search(r'''<center><b><big>ACTIVE SHAPE</big></b><p>(.*?)</table>\n''')[1]
    shape_grids = []
    for shape_info in re.findall(r'''<table.*?>(.*?)</table>''', tbl):
        grid = []
        for row_info in re.findall(r'''<tr>(.*?)</tr>''', shape_info):
            tiles = re.findall(r'''<td.*?>(.*?)</td>''', row_info)
            grid.append([int('square.gif' in tile_info) for tile_info in tiles])
        shape_grids.append(grid)

    # Compute kvho difficulty.
    R = len(goal_grid)
    C = len(goal_grid[0])
    min_shifts_needed = R * C * (N - 1) - sum(map(sum, goal_grid))
    shifts_available = sum(sum(sum(rows) for rows in grid) for grid in shape_grids)
    num_overshifts = shifts_available - min_shifts_needed
    num_flips = num_overshifts // N
    print(f'Puzzle permits {num_flips} flips ({num_overshifts} overshifts)')

    kvho_input = make_kvho_input(goal_grid, shape_grids, goal_idx)

    print(f'Waiting for kvho.')
    start_time = datetime.now()

    positions = []
    try:
        proc = subprocess.run(['c/ss'], input=kvho_input, encoding='utf-8', capture_output=True, timeout=timeout)
        for line in proc.stdout.splitlines():
            if 'x' in line and '=' in line:
                x = list(map(int, line.replace('x', ' ').replace('=', ' ').strip().split()))
                for c, r, _ in zip(x[::3], x[1::3], x[2::3]):
                    positions.append((r, c))
        print(f'Solution found in {datetime.now() - start_time}: {positions}')
    except subprocess.TimeoutExpired:
        print(f'Solution not found in time. Throwing this puzzle to get a new one.')
        for _ in shape_grids:
            positions.append((0, 0))

    for i, (shape, (r, c)) in enumerate(zip(shape_grids, positions)):
        print(f'\rPlacing piece {i+1}/{len(positions)}', end='')
        np.set_referer_path(path_game)
        np.get(path_process, 'type=action', f'posx={c}', f'posy={r}')
        time.sleep(0.5)
    print()

    if np.contains('You Won!'):
        np.set_referer_path(path_game)
        np.post(path_process + '?type=init')
        ending_np = np.current_np()
        print(f'Done level, earned {ending_np - starting_np} NP')
        return 1
    elif np.contains('reached your max neopoints'):
        print('Done for today.')
        return 2
    else:
        print('Did not solve level??')
        return 0