Esempio n. 1
0
def test_positive_sync_offset(lt_ctx, raw_dataset_8x8x8x8,
                              raw_data_8x8x8x8_path, io_backend):
    udf = SumSigUDF()
    sync_offset = 2

    ds_with_offset = RawFileDataSet(
        path=raw_data_8x8x8x8_path,
        nav_shape=(8, 8),
        sig_shape=(8, 8),
        dtype="float32",
        enable_direct=False,
        sync_offset=sync_offset,
        io_backend=io_backend,
    )
    ds_with_offset.set_num_cores(4)
    ds_with_offset = ds_with_offset.initialize(lt_ctx.executor)
    ds_with_offset.check_valid()

    p0 = next(ds_with_offset.get_partitions())
    assert p0._start_frame == 2
    assert p0.slice.origin == (0, 0, 0)

    tileshape = Shape((4, ) + tuple(ds_with_offset.shape.sig),
                      sig_dims=ds_with_offset.shape.sig.dims)
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=ds_with_offset.shape,
    )

    t0 = next(p0.get_tiles(tiling_scheme))
    assert tuple(t0.tile_slice.origin) == (0, 0, 0)

    for p in ds_with_offset.get_partitions():
        for t in p.get_tiles(tiling_scheme=tiling_scheme):
            pass

    assert p.slice.origin == (48, 0, 0)
    assert p.slice.shape[0] == 16

    result = lt_ctx.run_udf(dataset=raw_dataset_8x8x8x8, udf=udf)
    result = result['intensity'].raw_data[sync_offset:]

    result_with_offset = lt_ctx.run_udf(dataset=ds_with_offset, udf=udf)
    result_with_offset = result_with_offset[
        'intensity'].raw_data[:ds_with_offset._meta.image_count - sync_offset]

    assert np.allclose(result, result_with_offset)
Esempio n. 2
0
def test_missing_frames(lt_ctx, raw_data_8x8x8x8_path, io_backend):
    ds = RawFileDataSet(
        path=raw_data_8x8x8x8_path,
        nav_shape=(10, 8),
        sig_shape=(8, 8),
        dtype="float32",
        io_backend=io_backend,
    )
    ds.set_num_cores(4)
    ds = ds.initialize(lt_ctx.executor)

    tileshape = Shape((4, ) + tuple(ds.shape.sig), sig_dims=ds.shape.sig.dims)
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=ds.shape,
    )

    for p in ds.get_partitions():
        for t in p.get_tiles(tiling_scheme=tiling_scheme):
            pass

    assert p._start_frame == 60
    assert p._num_frames == 20
    assert p.slice.origin == (60, 0, 0)
    assert p.slice.shape[0] == 20
    assert t.tile_slice.origin == (60, 0, 0)
    assert t.tile_slice.shape[0] == 4
Esempio n. 3
0
def large_raw(tmpdir_factory):
    datadir = tmpdir_factory.mktemp('data')
    filename = datadir + '/raw-test-large-sparse'
    shape = (100, 100, 1216, 1216)
    dtype = np.uint16
    size = np.prod(np.int64(shape)) * np.dtype(dtype).itemsize
    if platform.system() == "Windows":
        os.system('FSUtil File CreateNew "%s" 0x%X' % (filename, size))
        os.system('FSUtil Sparse SetFlag "%s"' % filename)
        os.system('FSUtil Sparse SetRange "%s" 0 0x%X' % (filename, size))
    else:
        with open(filename, 'wb') as f:
            f.truncate(size)
        stat = os.stat(filename)
        assert stat.st_blocks == 0
    ds = RawFileDataSet(
        path=str(filename),
        scan_size=shape[:2],
        dtype=dtype,
        detector_size=shape[2:],
    )
    ds.set_num_cores(2)
    ds = ds.initialize(InlineJobExecutor())
    yield ds
Esempio n. 4
0
def test_positive_sync_offset_raw(lt_ctx, benchmark, raw_data_8x8x8x8_path):
    ds = RawFileDataSet(path=raw_data_8x8x8x8_path,
                        nav_shape=(8, 8),
                        sig_shape=(8, 8),
                        dtype="float32",
                        enable_direct=False,
                        sync_offset=2)
    ds.set_num_cores(4)
    ds = ds.initialize(lt_ctx.executor)

    tileshape = Shape((4, ) + tuple(ds.shape.sig), sig_dims=ds.shape.sig.dims)
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=ds.shape,
    )

    p0 = next(ds.get_partitions())
    benchmark(get_first_tile, p0=p0, tiling_scheme=tiling_scheme)
Esempio n. 5
0
def test_too_many_frames(lt_ctx, raw_data_8x8x8x8_path, io_backend):
    ds = RawFileDataSet(
        path=raw_data_8x8x8x8_path,
        nav_shape=(6, 8),
        sig_shape=(8, 8),
        dtype="float32",
        io_backend=io_backend,
    )
    ds.set_num_cores(4)
    ds = ds.initialize(lt_ctx.executor)

    tileshape = Shape((4, ) + tuple(ds.shape.sig), sig_dims=ds.shape.sig.dims)
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=ds.shape,
    )

    for p in ds.get_partitions():
        for t in p.get_tiles(tiling_scheme=tiling_scheme):
            pass