Esempio n. 1
0
    def predict(self):
        """
        Predicts tags in the given data
        It reports the accuracy if the data is fully labeled
        @type data_test: SequenceData
        @param data_test: the test data set
        @return: the predicted labels, the accuracy, the f1_score
        """

        # keep starting timestamp
        start_time = time.time()
        assert (not self.feature_extractor.is_training), "In order to predict, is_training should be False"

        # Extract features on all instances (labeled or unlabeled) of the test set

        # pass them to liblinearutil for prediction
        pred_labels, (acc, _, _), _ = liblinearutil.predict(self.label_list_test, self.features_list_test,
                                                            self.__liblinear_model, "-q")

        # print some useful information
        if not self.quiet:
            num_seconds = int(math.ceil(time.time() - start_time))
            # estimate prediction time
            print("Prediction time: {0}".format(str(datetime.timedelta(seconds=num_seconds))))

        # convert predicted labels from integer IDs to strings.
        pred_labels = self.convert_prediction(pred_labels, self.data_test)
        # for i, label in enumerate(pred_labels):
        #    pred_labels[i] = self.feature_extractor.get_label_string(label)
        self.__save_prediction_to_file(self.data_test, pred_labels)

        return pred_labels, acc
Esempio n. 2
0
def model_training(x,y,x_test,y_test):
    prob = liblinearutil.problem(y, x)
    start = time.process_time()
    # sklearn.svm.libsvm.cross_validation(x,y)
    # sklearn.svm.libsvm.fit(x,y)
    param = liblinearutil.parameter('-q')
    m = liblinearutil.train(prob, param)
    train_time = time.process_time() - start
    start2 = time.process_time()
    pred_labels, (acc, MSE, SCC), pred_values = liblinearutil.predict(y_test, x_test, m)
    predict_time = time.process_time() - start2
    # print(time.process_time() - start)
    return train_time,predict_time
Esempio n. 3
0
def model_training(n, i):
    meth = method[i]
    y, x = liblinearutil.svm_read_problem("other_method/kmeans_linear/%s/train_%s" % (
        name, meth))
    y_test, x_test = liblinearutil.svm_read_problem("other_method/kmeans_linear/%s/test_%s" % (
        name, meth))

    prob = liblinearutil.problem(y, x)
    temp_result = np.empty((14))

    for idx, val in enumerate(cost):
        param = liblinearutil.parameter(' -q -c %f' % (val))
        m = liblinearutil.train(prob, param)
        pred_labels, (temp_result[idx], MSE, SCC), pred_values = liblinearutil.predict(y_test, x_test, m)

    return (i, f_idx, n, temp_result)
Esempio n. 4
0
def model_training():
    meth = method[0]
    y, x = liblinearutil.svm_read_problem("other_method/kmeans_linear/%s/train_%s" % (
        name, meth))
    y_test, x_test = liblinearutil.svm_read_problem("other_method/kmeans_linear/%s/test_%s" % (
        name, meth))

    prob = liblinearutil.problem(y, x)
    temp_result = np.zeros((12))
    # print(x.shape(1))

    for idx, val in enumerate(cost):
        start = time.time()
        param = liblinearutil.parameter(' -q -c %f' % (val))
        m = liblinearutil.train(prob, param)
        pred_labels, (temp_result[idx], MSE, SCC), pred_values = liblinearutil.predict(y_test, x_test, m)
    # print(temp_result)
    t2 = time.time()-start
    return np.max(temp_result),t2
Esempio n. 5
0
def model_training():
    x, y = load_svmlight_file("svm/BudgetedSVM/original/%s/train" % (name))
    x_test, y_test = load_svmlight_file("svm/BudgetedSVM/original/%s/test" %
                                        (name))
    # x = np.asarray(x)
    # x_test = np.asarray(x_test)
    # scaler = StandardScaler().fit(x)
    #
    # x = scaler.transform(x)
    prob = liblinearutil.problem(y, x)
    temp_result = np.empty((14))

    # x_test = scaler.transform(x_test)
    param = liblinearutil.parameter(' -q ')
    start = time.process_time()
    m = liblinearutil.train(prob, param)
    print(time.process_time() - start)
    start2 = time.process_time()
    pred_labels, (acc, MSE,
                  SCC), pred_values = liblinearutil.predict(y_test, x_test, m)
    print(time.process_time() - start2, acc)
    exit()