def model(self, batch, lr, wd, ema, beta, w_match, warmup_kimg=1024, nu=2, mixmode='xxy.yxy', **kwargs): hwc = [self.dataset.height, self.dataset.width, self.dataset.colors] x_in = tf.placeholder(tf.float32, [None] + hwc, 'x') y_in = tf.placeholder(tf.float32, [None, nu] + hwc, 'y') l_in = tf.placeholder(tf.int32, [None], 'labels') wd *= lr w_match *= tf.clip_by_value(tf.cast(self.step, tf.float32) / (warmup_kimg << 10), 0, 1) augment = MixMode(mixmode) classifier = functools.partial(self.classifier, **kwargs) y = tf.reshape(tf.transpose(y_in, [1, 0, 2, 3, 4]), [-1] + hwc) # generate guessed label guess = self.guess_label(tf.split(y, nu), classifier, T=0.5, **kwargs) ly = tf.stop_gradient(guess.p_target) lx = tf.one_hot(l_in, self.nclass) # apply mixup xy, labels_xy = augment([x_in] + tf.split(y, nu), [lx] + [ly] * nu, [beta, beta]) x, y = xy[0], xy[1:] labels_x, labels_y = labels_xy[0], tf.concat(labels_xy[1:], 0) del xy, labels_xy batches = layers.interleave([x] + y, batch) skip_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) logits = [classifier(batches[0], training=True)] post_ops = [v for v in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if v not in skip_ops] for batchi in batches[1:]: logits.append(classifier(batchi, training=True)) logits = layers.interleave(logits, batch) logits_x = logits[0] logits_y = tf.concat(logits[1:], 0) loss_xe = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels_x, logits=logits_x) loss_xe = tf.reduce_mean(loss_xe) loss_l2u = tf.square(labels_y - tf.nn.softmax(logits_y)) loss_l2u = tf.reduce_mean(loss_l2u) tf.summary.scalar('losses/xe', loss_xe) tf.summary.scalar('losses/l2u', loss_l2u) ema = tf.train.ExponentialMovingAverage(decay=ema) ema_op = ema.apply(utils.model_vars()) ema_getter = functools.partial(utils.getter_ema, ema) post_ops.append(ema_op) post_ops.extend([tf.assign(v, v * (1 - wd)) for v in utils.model_vars('classify') if 'kernel' in v.name]) train_op = tf.train.AdamOptimizer(lr).minimize(loss_xe + w_match * loss_l2u, colocate_gradients_with_ops=True) with tf.control_dependencies([train_op]): train_op = tf.group(*post_ops) # Tuning op: only retrain batch norm. skip_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) classifier(batches[0], training=True) train_bn = tf.group(*[v for v in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if v not in skip_ops]) return EasyDict( x=x_in, y=y_in, label=l_in, train_op=train_op, tune_op=train_bn, classify_raw=tf.nn.softmax(classifier(x_in, training=False)), # No EMA, for debugging. classify_op=tf.nn.softmax(classifier(x_in, getter=ema_getter, training=False))) def cutmix():
def model(self, batch, lr, wd, ema, beta, w_match, warmup_kimg=1024, nu=2, mixmode='xxy.yxy', dbuf=128, **kwargs): hwc = [self.dataset.height, self.dataset.width, self.dataset.colors] xt_in = tf.placeholder(tf.float32, [batch] + hwc, 'xt') # For training x_in = tf.placeholder(tf.float32, [None] + hwc, 'x') y_in = tf.placeholder(tf.float32, [batch, nu] + hwc, 'y') l_in = tf.placeholder(tf.int32, [batch], 'labels') wd *= lr w_match *= tf.clip_by_value( tf.cast(self.step, tf.float32) / (warmup_kimg << 10), 0, 1) augment = MixMode(mixmode) classifier = lambda x, **kw: self.classifier(x, **kw, **kwargs).logits # Moving average of the current estimated label distribution p_model = layers.PMovingAverage('p_model', self.nclass, dbuf) p_target = layers.PMovingAverage( 'p_target', self.nclass, dbuf) # Rectified distribution (only for plotting) # Known (or inferred) true unlabeled distribution p_data = layers.PData(self.dataset) y = tf.reshape(tf.transpose(y_in, [1, 0, 2, 3, 4]), [-1] + hwc) guess = self.guess_label(tf.split(y, nu), classifier, T=0.5, **kwargs) ly = tf.stop_gradient(guess.p_target) lx = tf.one_hot(l_in, self.nclass) xy, labels_xy = augment([xt_in] + tf.split(y, nu), [lx] + [ly] * nu, [beta, beta]) x, y = xy[0], xy[1:] labels_x, labels_y = labels_xy[0], tf.concat(labels_xy[1:], 0) del xy, labels_xy batches = layers.interleave([x] + y, batch) skip_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) logits = [classifier(batches[0], training=True)] post_ops = [ v for v in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if v not in skip_ops ] for batchi in batches[1:]: logits.append(classifier(batchi, training=True)) logits = layers.interleave(logits, batch) logits_x = logits[0] logits_y = tf.concat(logits[1:], 0) loss_xe = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels_x, logits=logits_x) loss_xe = tf.reduce_mean(loss_xe) loss_l2u = tf.square(labels_y - tf.nn.softmax(logits_y)) loss_l2u = tf.reduce_mean(loss_l2u) tf.summary.scalar('losses/xe', loss_xe) tf.summary.scalar('losses/l2u', loss_l2u) self.distribution_summary(p_data(), p_model(), p_target()) ema = tf.train.ExponentialMovingAverage(decay=ema) ema_op = ema.apply(utils.model_vars()) ema_getter = functools.partial(utils.getter_ema, ema) post_ops.extend([ ema_op, p_model.update(guess.p_model), p_target.update(guess.p_target) ]) if p_data.has_update: post_ops.append(p_data.update(lx)) post_ops.extend([ tf.assign(v, v * (1 - wd)) for v in utils.model_vars('classify') if 'kernel' in v.name ]) train_op = tf.train.AdamOptimizer(lr).minimize( loss_xe + w_match * loss_l2u, colocate_gradients_with_ops=True) with tf.control_dependencies([train_op]): train_op = tf.group(*post_ops) return EasyDict( xt=xt_in, x=x_in, y=y_in, label=l_in, train_op=train_op, classify_raw=tf.nn.softmax(classifier( x_in, training=False)), # No EMA, for debugging. classify_op=tf.nn.softmax( classifier(x_in, getter=ema_getter, training=False)))
def model(self, batch, lr, wd, ema, beta, w_match, warmup_kimg=1024, nu=2, mixmode='xxy.yxy', **kwargs): hwc = [self.dataset.height, self.dataset.width, self.dataset.colors] # Create placeholders for the labeled images, unlabeled images, # and the ground truth supervised labels respectively. x_in = tf.placeholder(tf.float32, [None] + hwc, 'x') y_in = tf.placeholder(tf.float32, [None, nu] + hwc, 'y') l_in = tf.placeholder(tf.int32, [None], 'labels') wd *= lr w_match *= tf.clip_by_value( tf.cast(self.step, tf.float32) / (warmup_kimg << 10), 0, 1) augment = MixMode(mixmode) classifier = functools.partial(self.classifier, **kwargs) y = tf.reshape(tf.transpose(y_in, [1, 0, 2, 3, 4]), [-1] + hwc) guess = self.guess_label(tf.split(y, nu), classifier, T=0.5, **kwargs) ly = tf.stop_gradient(guess.p_target) lx = tf.one_hot(l_in, self.nclass) # Create MixUp examples. xy, labels_xy = augment([x_in] + tf.split(y, nu), [lx] + [ly] * nu, [beta, beta]) x, y = xy[0], xy[1:] labels_x, labels_y = labels_xy[0], tf.concat(labels_xy[1:], 0) del xy, labels_xy # Create batches that represent both labeled and unlabeled batches. # For more, see google-research/mixmatch/issues/5. batches = layers.interleave([x] + y, batch) skip_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) logits = [classifier(batches[0], training=True)] post_ops = [ v for v in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if v not in skip_ops ] for batchi in batches[1:]: logits.append(classifier(batchi, training=True)) logits = layers.interleave(logits, batch) logits_x = logits[0] logits_y = tf.concat(logits[1:], 0) # Calculate supervised and unsupervised losses. loss_xe = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels_x, logits=logits_x) if FLAGS.tsa != "none": print("Using training signal annealing...") loss_xe = self.anneal_sup_loss(logits_x, labels_x, loss_xe, self.step) else: loss_xe = tf.reduce_mean(loss_xe) loss_l2u = tf.square(labels_y - tf.nn.softmax(logits_y)) if FLAGS.percent_mask > 0: print("Using percent-based confidence masking...") loss_l2u = self.percent_confidence_mask_unsup( logits_y, labels_y, loss_l2u) else: loss_l2u = tf.reduce_mean(loss_l2u) # Calculate largest predicted probability for each image. unsup_prob = tf.nn.softmax(logits_y, axis=-1) tf.summary.scalar('losses/min_unsup_prob', tf.reduce_min(tf.reduce_max(unsup_prob, axis=-1))) tf.summary.scalar('losses/mean_unsup_prob', tf.reduce_mean(tf.reduce_max(unsup_prob, axis=-1))) tf.summary.scalar('losses/max_unsup_prob', tf.reduce_max(tf.reduce_max(unsup_prob, axis=-1))) # Print losses to tensorboard. tf.summary.scalar('losses/xe', loss_xe) tf.summary.scalar('losses/l2u', loss_l2u) tf.summary.scalar('losses/overall', loss_xe + w_match * loss_l2u) # Applying EMA weights to model. Conceptualized by Tarvainen & Valpola, 2017 # See https://arxiv.org/abs/1703.01780 for more. ema = tf.train.ExponentialMovingAverage(decay=ema) ema_op = ema.apply(utils.model_vars()) ema_getter = functools.partial(utils.getter_ema, ema) post_ops.append(ema_op) post_ops.extend([ tf.assign(v, v * (1 - wd)) for v in utils.model_vars('classify') if 'kernel' in v.name ]) train_op = tf.train.AdamOptimizer(lr).minimize( loss_xe + w_match * loss_l2u, colocate_gradients_with_ops=True) with tf.control_dependencies([train_op]): train_op = tf.group(*post_ops) # Tuning op: only retrain batch norm. skip_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) classifier(batches[0], training=True) train_bn = tf.group(*[ v for v in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if v not in skip_ops ]) return EasyDict( x=x_in, y=y_in, label=l_in, train_op=train_op, tune_op=train_bn, classify_raw=tf.nn.softmax(classifier( x_in, training=False)), # No EMA, for debugging. classify_op=tf.nn.softmax( classifier(x_in, getter=ema_getter, training=False)), eval_loss_op=tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2( logits=classifier(x_in, getter=ema_getter, training=False), labels=tf.one_hot(l_in, self.nclass))))