Esempio n. 1
0
	def predict(self, data):
		rows = []
		for sentence in data:
			rows.append(self.features_for_sentence(sentence))

		feat_lu = lambda f: {self.vocab[item]:f[item] for item in f if item in self.vocab}
		rows = [map(feat_lu, x) for x in rows]
		libml.write_features(self.filename, rows, None, self.type);

		libml.predict(self.filename, self.type)
		
		labels_list = libml.read_labels(self.filename, self.type)
		
		for t, labels in labels_list.items():
			tmp = []
			for sentence in data:
				tmp.append([labels.pop(0) for i in range(len(sentence))])
				tmp[-1] = map(lambda l: l.strip(), tmp[-1])
				tmp[-1] = map(lambda l: Model.reverse_labels[int(l)], tmp[-1])
			labels_list[t] = tmp

		return labels_list
Esempio n. 2
0
	def train(self, data, labels):
		rows = []
		for sentence in data:
			rows.append(self.features_for_sentence(sentence))

		for row in rows:
			for features in row:
				for feature in features:
					if feature not in self.vocab:
						self.vocab[feature] = len(self.vocab) + 1

		label_lu = lambda l: Model.labels[l]
		labels = [map(label_lu, x) for x in labels]
		
		feat_lu = lambda f: {self.vocab[item]:f[item] for item in f}
		rows = [map(feat_lu, x) for x in rows]
		
		libml.write_features(self.filename, rows, labels, self.type)

		with open(self.filename, "w") as model:
			pickle.dump(self, model)

		libml.train(self.filename, self.type)