Esempio n. 1
0
 def __mul__(s, t):
     cls, new, (prec, rounding) = s._ctxdata
     if not hasattr(t, '_mpc_'):
         if isinstance(t, int_types):
             v = new(cls)
             v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding)
             return v
         t = s.mpc_convert_lhs(t)
         if t is NotImplemented:
             return t
         if hasattr(t, '_mpf_'):
             v = new(cls)
             v._mpc_ = mpc_mul_mpf(s._mpc_, t._mpf_, prec, rounding)
             return v
         t = s.mpc_convert_lhs(t)
     v = new(cls)
     v._mpc_ = mpc_mul(s._mpc_, t._mpc_, prec, rounding)
     return v
Esempio n. 2
0
 def __mul__(s, t):
     cls, new, (prec, rounding) = s._ctxdata
     if not hasattr(t, '_mpc_'):
         if isinstance(t, int_types):
             v = new(cls)
             v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding)
             return v
         t = s.mpc_convert_lhs(t)
         if t is NotImplemented:
             return t
         if hasattr(t, '_mpf_'):
             v = new(cls)
             v._mpc_ = mpc_mul_mpf(s._mpc_, t._mpf_, prec, rounding)
             return v
         t = s.mpc_convert_lhs(t)
     v = new(cls)
     v._mpc_ = mpc_mul(s._mpc_, t._mpc_, prec, rounding)
     return v
Esempio n. 3
0
    def fdot(ctx, A, B=None):
        r"""
        Computes the dot product of the iterables `A` and `B`,

        .. math ::

            \sum_{k=0} A_k B_k.

        Alternatively, :func:`fdot` accepts a single iterable of pairs.
        In other words, ``fdot(A,B)`` and ``fdot(zip(A,B))`` are equivalent.

        The elements are automatically converted to mpmath numbers.

        Examples::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> A = [2, 1.5, 3]
            >>> B = [1, -1, 2]
            >>> fdot(A, B)
            mpf('6.5')
            >>> zip(A, B)
            [(2, 1), (1.5, -1), (3, 2)]
            >>> fdot(_)
            mpf('6.5')

        """
        if B:
            A = zip(A, B)
        prec, rnd = ctx._prec_rounding
        real = []
        imag = []
        other = 0
        hasattr_ = hasattr
        types = (ctx.mpf, ctx.mpc)
        for a, b in A:
            if type(a) not in types: a = ctx.convert(a)
            if type(b) not in types: b = ctx.convert(b)
            a_real = hasattr_(a, "_mpf_")
            b_real = hasattr_(b, "_mpf_")
            if a_real and b_real:
                real.append(mpf_mul(a._mpf_, b._mpf_))
                continue
            a_complex = hasattr_(a, "_mpc_")
            b_complex = hasattr_(b, "_mpc_")
            if a_real and b_complex:
                aval = a._mpf_
                bre, bim = b._mpc_
                real.append(mpf_mul(aval, bre))
                imag.append(mpf_mul(aval, bim))
            elif b_real and a_complex:
                are, aim = a._mpc_
                bval = b._mpf_
                real.append(mpf_mul(are, bval))
                imag.append(mpf_mul(aim, bval))
            elif a_complex and b_complex:
                re, im = mpc_mul(a._mpc_, b._mpc_, prec + 20)
                real.append(re)
                imag.append(im)
            else:
                other += a * b
        s = mpf_sum(real, prec, rnd)
        if imag:
            s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd)))
        else:
            s = ctx.make_mpf(s)
        if other is 0:
            return s
        else:
            return s + other
Esempio n. 4
0
    def fmul(ctx, x, y, **kwargs):
        """
        Multiplies the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        The result is an mpmath number::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fmul(2, 5.0)
            mpf('10.0')
            >>> fmul(0.5j, 0.5)
            mpc(real='0.0', imag='0.25')

        Avoiding roundoff::

            >>> x, y = 10**10+1, 10**15+1
            >>> print x*y
            10000000001000010000000001
            >>> print mpf(x) * mpf(y)
            1.0000000001e+25
            >>> print int(mpf(x) * mpf(y))
            10000000001000011026399232
            >>> print int(fmul(x, y))
            10000000001000011026399232
            >>> print int(fmul(x, y, dps=25))
            10000000001000010000000001
            >>> print int(fmul(x, y, exact=True))
            10000000001000010000000001

        Exact multiplication with complex numbers can be inefficient and may
        be impossible to perform with large magnitude differences between
        real and imaginary parts::

            >>> x = 1+2j
            >>> y = mpc(2, '1e-100000000000000000000')
            >>> fmul(x, y)
            mpc(real='2.0', imag='4.0')
            >>> fmul(x, y, rounding='u')
            mpc(real='2.0', imag='4.0000000000000009')
            >>> fmul(x, y, exact=True)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")
Esempio n. 5
0
    def fmul(ctx, x, y, **kwargs):
        """
        Multiplies the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        The result is an mpmath number::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fmul(2, 5.0)
            mpf('10.0')
            >>> fmul(0.5j, 0.5)
            mpc(real='0.0', imag='0.25')

        Avoiding roundoff::

            >>> x, y = 10**10+1, 10**15+1
            >>> print x*y
            10000000001000010000000001
            >>> print mpf(x) * mpf(y)
            1.0000000001e+25
            >>> print int(mpf(x) * mpf(y))
            10000000001000011026399232
            >>> print int(fmul(x, y))
            10000000001000011026399232
            >>> print int(fmul(x, y, dps=25))
            10000000001000010000000001
            >>> print int(fmul(x, y, exact=True))
            10000000001000010000000001

        Exact multiplication with complex numbers can be inefficient and may
        be impossible to perform with large magnitude differences between
        real and imaginary parts::

            >>> x = 1+2j
            >>> y = mpc(2, '1e-100000000000000000000')
            >>> fmul(x, y)
            mpc(real='2.0', imag='4.0')
            >>> fmul(x, y, rounding='u')
            mpc(real='2.0', imag='4.0000000000000009')
            >>> fmul(x, y, exact=True)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")
Esempio n. 6
0
    def fdot(ctx, A, B=None):
        r"""
        Computes the dot product of the iterables `A` and `B`,

        .. math ::

            \sum_{k=0} A_k B_k.

        Alternatively, :func:`fdot` accepts a single iterable of pairs.
        In other words, ``fdot(A,B)`` and ``fdot(zip(A,B))`` are equivalent.

        The elements are automatically converted to mpmath numbers.

        Examples::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> A = [2, 1.5, 3]
            >>> B = [1, -1, 2]
            >>> fdot(A, B)
            mpf('6.5')
            >>> zip(A, B)
            [(2, 1), (1.5, -1), (3, 2)]
            >>> fdot(_)
            mpf('6.5')

        """
        if B:
            A = zip(A, B)
        prec, rnd = ctx._prec_rounding
        real = []
        imag = []
        other = 0
        hasattr_ = hasattr
        types = (ctx.mpf, ctx.mpc)
        for a, b in A:
            if type(a) not in types: a = ctx.convert(a)
            if type(b) not in types: b = ctx.convert(b)
            a_real = hasattr_(a, "_mpf_")
            b_real = hasattr_(b, "_mpf_")
            if a_real and b_real:
                real.append(mpf_mul(a._mpf_, b._mpf_))
                continue
            a_complex = hasattr_(a, "_mpc_")
            b_complex = hasattr_(b, "_mpc_")
            if a_real and b_complex:
                aval = a._mpf_
                bre, bim = b._mpc_
                real.append(mpf_mul(aval, bre))
                imag.append(mpf_mul(aval, bim))
            elif b_real and a_complex:
                are, aim = a._mpc_
                bval = b._mpf_
                real.append(mpf_mul(are, bval))
                imag.append(mpf_mul(aim, bval))
            elif a_complex and b_complex:
                re, im = mpc_mul(a._mpc_, b._mpc_, prec+20)
                real.append(re)
                imag.append(im)
            else:
                other += a*b
        s = mpf_sum(real, prec, rnd)
        if imag:
            s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd)))
        else:
            s = ctx.make_mpf(s)
        if other is 0:
            return s
        else:
            return s + other