Esempio n. 1
0
 def __rsub__(s, t):
     cls, new, (prec, rounding) = s._ctxdata
     if type(t) in int_types:
         v = new(cls)
         v._mpf_ = mpf_sub(from_int(t), s._mpf_, prec, rounding)
         return v
     t = s.mpf_convert_lhs(t)
     if t is NotImplemented:
         return t
     return t - s
Esempio n. 2
0
 def __rsub__(s, t):
     cls, new, (prec, rounding) = s._ctxdata
     if type(t) in int_types:
         v = new(cls)
         v._mpf_ = mpf_sub(from_int(t), s._mpf_, prec, rounding)
         return v
     t = s.mpf_convert_lhs(t)
     if t is NotImplemented:
         return t
     return t - s
Esempio n. 3
0
    def fsub(ctx, x, y, **kwargs):
        """
        Subtracts the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        Using :func:`fsub` with precision and rounding control::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fsub(2, 1e-20)
            mpf('2.0')
            >>> fsub(2, 1e-20, rounding='d')
            mpf('1.9999999999999998')
            >>> nprint(fsub(2, 1e-20, prec=100), 25)
            1.99999999999999999999
            >>> nprint(fsub(2, 1e-20, dps=15), 25)
            2.0
            >>> nprint(fsub(2, 1e-20, dps=25), 25)
            1.99999999999999999999
            >>> nprint(fsub(2, 1e-20, exact=True), 25)
            1.99999999999999999999

        Exact subtraction avoids cancellation errors, enforcing familiar laws
        of numbers such as `x-y+y = x`, which don't hold in floating-point
        arithmetic with finite precision::

            >>> x, y = mpf(2), mpf('1e1000')
            >>> print x - y + y
            0.0
            >>> print fsub(x, y, prec=inf) + y
            2.0
            >>> print fsub(x, y, exact=True) + y
            2.0

        Exact addition can be inefficient and may be impossible to perform
        with large magnitude differences::

            >>> fsub(1, '1e-100000000000000000000', prec=inf)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")
Esempio n. 4
0
    def fsub(ctx, x, y, **kwargs):
        """
        Subtracts the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        Using :func:`~mpmath.fsub` with precision and rounding control::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fsub(2, 1e-20)
            mpf('2.0')
            >>> fsub(2, 1e-20, rounding='d')
            mpf('1.9999999999999998')
            >>> nprint(fsub(2, 1e-20, prec=100), 25)
            1.99999999999999999999
            >>> nprint(fsub(2, 1e-20, dps=15), 25)
            2.0
            >>> nprint(fsub(2, 1e-20, dps=25), 25)
            1.99999999999999999999
            >>> nprint(fsub(2, 1e-20, exact=True), 25)
            1.99999999999999999999

        Exact subtraction avoids cancellation errors, enforcing familiar laws
        of numbers such as `x-y+y = x`, which don't hold in floating-point
        arithmetic with finite precision::

            >>> x, y = mpf(2), mpf('1e1000')
            >>> print x - y + y
            0.0
            >>> print fsub(x, y, prec=inf) + y
            2.0
            >>> print fsub(x, y, exact=True) + y
            2.0

        Exact addition can be inefficient and may be impossible to perform
        with large magnitude differences::

            >>> fsub(1, '1e-100000000000000000000', prec=inf)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")