def __rsub__(s, t): cls, new, (prec, rounding) = s._ctxdata if type(t) in int_types: v = new(cls) v._mpf_ = mpf_sub(from_int(t), s._mpf_, prec, rounding) return v t = s.mpf_convert_lhs(t) if t is NotImplemented: return t return t - s
def fsub(ctx, x, y, **kwargs): """ Subtracts the numbers *x* and *y*, giving a floating-point result, optionally using a custom precision and rounding mode. See the documentation of :func:`fadd` for a detailed description of how to specify precision and rounding. **Examples** Using :func:`fsub` with precision and rounding control:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fsub(2, 1e-20) mpf('2.0') >>> fsub(2, 1e-20, rounding='d') mpf('1.9999999999999998') >>> nprint(fsub(2, 1e-20, prec=100), 25) 1.99999999999999999999 >>> nprint(fsub(2, 1e-20, dps=15), 25) 2.0 >>> nprint(fsub(2, 1e-20, dps=25), 25) 1.99999999999999999999 >>> nprint(fsub(2, 1e-20, exact=True), 25) 1.99999999999999999999 Exact subtraction avoids cancellation errors, enforcing familiar laws of numbers such as `x-y+y = x`, which don't hold in floating-point arithmetic with finite precision:: >>> x, y = mpf(2), mpf('1e1000') >>> print x - y + y 0.0 >>> print fsub(x, y, prec=inf) + y 2.0 >>> print fsub(x, y, exact=True) + y 2.0 Exact addition can be inefficient and may be impossible to perform with large magnitude differences:: >>> fsub(1, '1e-100000000000000000000', prec=inf) Traceback (most recent call last): ... OverflowError: the exact result does not fit in memory """ prec, rounding = ctx._parse_prec(kwargs) x = ctx.convert(x) y = ctx.convert(y) try: if hasattr(x, '_mpf_'): if hasattr(y, '_mpf_'): return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding)) if hasattr(x, '_mpc_'): if hasattr(y, '_mpf_'): return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding)) except (ValueError, OverflowError): raise OverflowError(ctx._exact_overflow_msg) raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fsub(ctx, x, y, **kwargs): """ Subtracts the numbers *x* and *y*, giving a floating-point result, optionally using a custom precision and rounding mode. See the documentation of :func:`~mpmath.fadd` for a detailed description of how to specify precision and rounding. **Examples** Using :func:`~mpmath.fsub` with precision and rounding control:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fsub(2, 1e-20) mpf('2.0') >>> fsub(2, 1e-20, rounding='d') mpf('1.9999999999999998') >>> nprint(fsub(2, 1e-20, prec=100), 25) 1.99999999999999999999 >>> nprint(fsub(2, 1e-20, dps=15), 25) 2.0 >>> nprint(fsub(2, 1e-20, dps=25), 25) 1.99999999999999999999 >>> nprint(fsub(2, 1e-20, exact=True), 25) 1.99999999999999999999 Exact subtraction avoids cancellation errors, enforcing familiar laws of numbers such as `x-y+y = x`, which don't hold in floating-point arithmetic with finite precision:: >>> x, y = mpf(2), mpf('1e1000') >>> print x - y + y 0.0 >>> print fsub(x, y, prec=inf) + y 2.0 >>> print fsub(x, y, exact=True) + y 2.0 Exact addition can be inefficient and may be impossible to perform with large magnitude differences:: >>> fsub(1, '1e-100000000000000000000', prec=inf) Traceback (most recent call last): ... OverflowError: the exact result does not fit in memory """ prec, rounding = ctx._parse_prec(kwargs) x = ctx.convert(x) y = ctx.convert(y) try: if hasattr(x, '_mpf_'): if hasattr(y, '_mpf_'): return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding)) if hasattr(x, '_mpc_'): if hasattr(y, '_mpf_'): return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding)) except (ValueError, OverflowError): raise OverflowError(ctx._exact_overflow_msg) raise ValueError("Arguments need to be mpf or mpc compatible numbers")