Esempio n. 1
0
def mpc_psi0(z, prec, rnd=round_fast):
    """
    Computation of the digamma function (psi function of order 0)
    of a complex argument.
    """
    re, im = z
    # Fall back to the real case
    if im == fzero:
        return (mpf_psi0(re, prec, rnd), fzero)
    wp = prec + 20
    sign, man, exp, bc = re
    # Reflection formula
    if sign and exp+bc > 3:
        c = mpc_cos_pi(z, wp)
        s = mpc_sin_pi(z, wp)
        q = mpc_mul_mpf(mpc_div(c, s, wp), mpf_pi(wp), wp)
        p = mpc_psi0(mpc_sub(mpc_one, z, wp), wp)
        return mpc_sub(p, q, prec, rnd)
    # Just the logarithmic term
    if (not sign) and bc + exp > wp:
        return mpc_log(mpc_sub(z, mpc_one, wp), prec, rnd)
    # Initial recurrence to obtain a large enough z
    w = to_int(re)
    n = int(0.11*wp) + 2
    s = mpc_zero
    if w < n:
        for k in xrange(w, n):
            s = mpc_sub(s, mpc_reciprocal(z, wp), wp)
            z = mpc_add_mpf(z, fone, wp)
    z = mpc_sub(z, mpc_one, wp)
    # Logarithmic and endpoint term
    s = mpc_add(s, mpc_log(z, wp), wp)
    s = mpc_add(s, mpc_div(mpc_half, z, wp), wp)
    # Euler-Maclaurin remainder sum
    z2 = mpc_square(z, wp)
    t = mpc_one
    prev = mpc_zero
    k = 1
    eps = mpf_shift(fone, -wp+2)
    while 1:
        t = mpc_mul(t, z2, wp)
        bern = mpf_bernoulli(2*k, wp)
        term = mpc_mpf_div(bern, mpc_mul_int(t, 2*k, wp), wp)
        s = mpc_sub(s, term, wp)
        szterm = mpc_abs(term, 10)
        if k > 2 and mpf_le(szterm, eps):
            break
        prev = term
        k += 1
    return s
Esempio n. 2
0
def mpc_psi0(z, prec, rnd=round_fast):
    """
    Computation of the digamma function (psi function of order 0)
    of a complex argument.
    """
    re, im = z
    # Fall back to the real case
    if im == fzero:
        return (mpf_psi0(re, prec, rnd), fzero)
    wp = prec + 20
    sign, man, exp, bc = re
    # Reflection formula
    if sign and exp + bc > 3:
        c = mpc_cos_pi(z, wp)
        s = mpc_sin_pi(z, wp)
        q = mpc_mul(mpc_div(c, s, wp), (mpf_pi(wp), fzero), wp)
        p = mpc_psi0(mpc_sub(mpc_one, z, wp), wp)
        return mpc_sub(p, q, prec, rnd)
    # Just the logarithmic term
    if (not sign) and bc + exp > wp:
        return mpc_log(mpc_sub(z, mpc_one, wp), prec, rnd)
    # Initial recurrence to obtain a large enough z
    w = to_int(re)
    n = int(0.11 * wp) + 2
    s = mpc_zero
    if w < n:
        for k in xrange(w, n):
            s = mpc_sub(s, mpc_div(mpc_one, z, wp), wp)
            z = mpc_add_mpf(z, fone, wp)
    z = mpc_sub(z, mpc_one, wp)
    # Logarithmic and endpoint term
    s = mpc_add(s, mpc_log(z, wp), wp)
    s = mpc_add(s, mpc_div(mpc_half, z, wp), wp)
    # Euler-Maclaurin remainder sum
    z2 = mpc_mul(z, z, wp)
    t = mpc_one
    prev = mpc_zero
    k = 1
    eps = mpf_shift(fone, -wp + 2)
    while 1:
        t = mpc_mul(t, z2, wp)
        bern = mpf_bernoulli(2 * k, wp)
        term = mpc_div((bern, fzero), mpc_mul_int(t, 2 * k, wp), wp)
        s = mpc_sub(s, term, wp)
        szterm = mpc_abs(term, 10)
        if k > 2 and mpf_le(szterm, eps):
            break
        prev = term
        k += 1
    return s
Esempio n. 3
0
def mpc_gamma(x, prec, rounding=round_fast, p1=1):
    re, im = x
    if im == fzero:
        return mpf_gamma(re, prec, rounding, p1), fzero
    # More precision is needed for enormous x.
    sign, man, exp, bc = re
    isign, iman, iexp, ibc = im
    if re == fzero:
        size = iexp + ibc
    else:
        size = max(exp + bc, iexp + ibc)
    if size > 5:
        size = int(size * math.log(size, 2))
    reflect = sign or (exp + bc < -1)
    wp = prec + max(0, size) + 25
    # Near x = 0 pole (TODO: other poles)
    if p1:
        if size < -prec - 5:
            return mpc_add_mpf(mpc_div(mpc_one, x, 2*prec+10), \
                mpf_neg(mpf_euler(2*prec+10)), prec, rounding)
        elif size < -5:
            wp += (-2 * size)
    if p1:
        # Should be done exactly!
        re_orig = re
        re = mpf_sub(re, fone, bc + abs(exp) + 2)
        x = re, im
    if reflect:
        # Reflection formula
        wp += 15
        pi = mpf_pi(wp), fzero
        pix = mpc_mul(x, pi, wp)
        t = mpc_sin_pi(x, wp)
        u = mpc_sub(mpc_one, x, wp)
        g = mpc_gamma(u, wp)
        w = mpc_mul(t, g, wp)
        return mpc_div(pix, w, wp)
    # Extremely close to the real line?
    # XXX: reflection formula
    if iexp + ibc < -wp:
        a = mpf_gamma(re_orig, wp)
        b = mpf_psi0(re_orig, wp)
        gamma_diff = mpf_div(a, b, wp)
        return mpf_pos(a, prec, rounding), mpf_mul(gamma_diff, im, prec,
                                                   rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_complex(re, im, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    repa = mpf_add(re, from_int(a), wp)
    logxpa = mpc_log((repa, im), wp)
    reph = mpf_add(re, fhalf, wp)
    t = mpc_sub(mpc_mul(logxpa, (reph, im), wp), (repa, im), wp)
    t = mpc_mul(mpc_exp(t, wp), s, prec, rounding)
    return t
Esempio n. 4
0
def mpc_gamma(x, prec, rounding=round_fast, p1=1):
    re, im = x
    if im == fzero:
        return mpf_gamma(re, prec, rounding, p1), fzero
    # More precision is needed for enormous x.
    sign, man, exp, bc = re
    isign, iman, iexp, ibc = im
    if re == fzero:
        size = iexp+ibc
    else:
        size = max(exp+bc, iexp+ibc)
    if size > 5:
        size = int(size * math.log(size,2))
    reflect = sign or (exp+bc < -1)
    wp = prec + max(0, size) + 25
    # Near x = 0 pole (TODO: other poles)
    if p1:
        if size < -prec-5:
            return mpc_add_mpf(mpc_div(mpc_one, x, 2*prec+10), \
                mpf_neg(mpf_euler(2*prec+10)), prec, rounding)
        elif size < -5:
            wp += (-2*size)
    if p1:
        # Should be done exactly!
        re_orig = re
        re = mpf_sub(re, fone, bc+abs(exp)+2)
        x = re, im
    if reflect:
        # Reflection formula
        wp += 15
        pi = mpf_pi(wp), fzero
        pix = mpc_mul(x, pi, wp)
        t = mpc_sin_pi(x, wp)
        u = mpc_sub(mpc_one, x, wp)
        g = mpc_gamma(u, wp)
        w = mpc_mul(t, g, wp)
        return mpc_div(pix, w, wp)
    # Extremely close to the real line?
    # XXX: reflection formula
    if iexp+ibc < -wp:
        a = mpf_gamma(re_orig, wp)
        b = mpf_psi0(re_orig, wp)
        gamma_diff = mpf_div(a, b, wp)
        return mpf_pos(a, prec, rounding), mpf_mul(gamma_diff, im, prec, rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_complex(re, im, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    repa = mpf_add(re, from_int(a), wp)
    logxpa = mpc_log((repa, im), wp)
    reph = mpf_add(re, fhalf, wp)
    t = mpc_sub(mpc_mul(logxpa, (reph, im), wp), (repa, im), wp)
    t = mpc_mul(mpc_exp(t, wp), s, prec, rounding)
    return t
Esempio n. 5
0
def mpc_ci(z, prec, rnd=round_fast):
    re, im = z
    if im == fzero:
        ci = mpf_ci_si(re, prec, rnd, 0)[0]
        if mpf_sign(re) < 0:
            return (ci, mpf_pi(prec, rnd))
        return (ci, fzero)
    wp = prec + 20
    cre, cim = mpc_ci_si_taylor(re, im, wp, 0)
    cre = mpf_add(cre, mpf_euler(wp), wp)
    ci = mpc_add((cre, cim), mpc_log(z, wp), prec, rnd)
    return ci
Esempio n. 6
0
def mpc_ci(z, prec, rnd=round_fast):
    re, im = z
    if im == fzero:
        ci = mpf_ci_si(re, prec, rnd, 0)[0]
        if mpf_sign(re) < 0:
            return (ci, mpf_pi(prec, rnd))
        return (ci, fzero)
    wp = prec + 20
    cre, cim = mpc_ci_si_taylor(re, im, wp, 0)
    cre = mpf_add(cre, mpf_euler(wp), wp)
    ci = mpc_add((cre, cim), mpc_log(z, wp), prec, rnd)
    return ci
Esempio n. 7
0
def mpc_ei(z, prec, rnd=round_fast, e1=False):
    if e1:
        z = mpc_neg(z)
    a, b = z
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if b == fzero:
        if e1:
            x = mpf_neg(mpf_ei(a, prec, rnd))
            if not asign:
                y = mpf_neg(mpf_pi(prec, rnd))
            else:
                y = fzero
            return x, y
        else:
            return mpf_ei(a, prec, rnd), fzero
    if a != fzero:
        if not aman or not bman:
            return (fnan, fnan)
    wp = prec + 40
    amag = aexp+abc
    bmag = bexp+bbc
    zmag = max(amag, bmag)
    can_use_asymp = zmag > wp
    if not can_use_asymp:
        zabsint = abs(to_int(a)) + abs(to_int(b))
        can_use_asymp = zabsint > int(wp*0.693) + 20
    try:
        if can_use_asymp:
            if zmag > wp:
                v = fone, fzero
            else:
                zre = to_fixed(a, wp)
                zim = to_fixed(b, wp)
                vre, vim = complex_ei_asymptotic(zre, zim, wp)
                v = from_man_exp(vre, -wp), from_man_exp(vim, -wp)
            v = mpc_mul(v, mpc_exp(z, wp), wp)
            v = mpc_div(v, z, wp)
            if e1:
                v = mpc_neg(v, prec, rnd)
            else:
                x, y = v
                if bsign:
                    v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec, rnd)
                else:
                    v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec, rnd)
            return v
    except NoConvergence:
        pass
    #wp += 2*max(0,zmag)
    wp += 2*int(to_int(mpc_abs(z, 5)))
    zre = to_fixed(a, wp)
    zim = to_fixed(b, wp)
    vre, vim = complex_ei_taylor(zre, zim, wp)
    vre += euler_fixed(wp)
    v = from_man_exp(vre,-wp), from_man_exp(vim,-wp)
    if e1:
        u = mpc_log(mpc_neg(z),wp)
    else:
        u = mpc_log(z,wp)
    v = mpc_add(v, u, prec, rnd)
    if e1:
        v = mpc_neg(v)
    return v
Esempio n. 8
0
def mpc_ei(z, prec, rnd=round_fast, e1=False):
    if e1:
        z = mpc_neg(z)
    a, b = z
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if b == fzero:
        if e1:
            x = mpf_neg(mpf_ei(a, prec, rnd))
            if not asign:
                y = mpf_neg(mpf_pi(prec, rnd))
            else:
                y = fzero
            return x, y
        else:
            return mpf_ei(a, prec, rnd), fzero
    if a != fzero:
        if not aman or not bman:
            return (fnan, fnan)
    wp = prec + 40
    amag = aexp + abc
    bmag = bexp + bbc
    zmag = max(amag, bmag)
    can_use_asymp = zmag > wp
    if not can_use_asymp:
        zabsint = abs(to_int(a)) + abs(to_int(b))
        can_use_asymp = zabsint > int(wp * 0.693) + 20
    try:
        if can_use_asymp:
            if zmag > wp:
                v = fone, fzero
            else:
                zre = to_fixed(a, wp)
                zim = to_fixed(b, wp)
                vre, vim = complex_ei_asymptotic(zre, zim, wp)
                v = from_man_exp(vre, -wp), from_man_exp(vim, -wp)
            v = mpc_mul(v, mpc_exp(z, wp), wp)
            v = mpc_div(v, z, wp)
            if e1:
                v = mpc_neg(v, prec, rnd)
            else:
                x, y = v
                if bsign:
                    v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec,
                                                       rnd)
                else:
                    v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec,
                                                       rnd)
            return v
    except NoConvergence:
        pass
    #wp += 2*max(0,zmag)
    wp += 2 * int(to_int(mpc_abs(z, 5)))
    zre = to_fixed(a, wp)
    zim = to_fixed(b, wp)
    vre, vim = complex_ei_taylor(zre, zim, wp)
    vre += euler_fixed(wp)
    v = from_man_exp(vre, -wp), from_man_exp(vim, -wp)
    if e1:
        u = mpc_log(mpc_neg(z), wp)
    else:
        u = mpc_log(z, wp)
    v = mpc_add(v, u, prec, rnd)
    if e1:
        v = mpc_neg(v)
    return v