Esempio n. 1
0
def twinprime_fixed(prec):
    def I(n):
        return sum(
            moebius(d) << (n // d) for d in xrange(1, n + 1) if not n % d) // n

    wp = 2 * prec + 30
    res = fone
    primes = [from_rational(1, p, wp) for p in [2, 3, 5, 7]]
    ppowers = [mpf_mul(p, p, wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec + 10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3 * 15 * 35), wp)
    res = mpf_div(res, from_int(4 * 16 * 36), wp)
    return to_fixed(res, prec)
Esempio n. 2
0
def mpf_gamma_int(n, prec, rounding=round_fast):
    if n < 1000:
        return from_int(ifac(n-1), prec, rounding)
    # XXX: choose the cutoff less arbitrarily
    size = int(n*math.log(n,2))
    if prec > size/20.0:
        return from_int(ifac(n-1), prec, rounding)
    return mpf_gamma(from_int(n), prec, rounding)
Esempio n. 3
0
def mpf_gamma_int(n, prec, rounding=round_fast):
    if n < 1000:
        return from_int(int_fac(n - 1), prec, rounding)
    # XXX: choose the cutoff less arbitrarily
    size = int(n * math.log(n, 2))
    if prec > size / 20.0:
        return from_int(int_fac(n - 1), prec, rounding)
    return mpf_gamma(from_int(n), prec, rounding)
Esempio n. 4
0
def mpc_psi(m, z, prec, rnd=round_fast):
    """
    Computation of the polygamma function of arbitrary integer order
    m >= 0, for a complex argument z.
    """
    if m == 0:
        return mpc_psi0(z, prec, rnd)
    re, im = z
    wp = prec + 20
    sign, man, exp, bc = re
    if not man:
        if re == finf and im == fzero:
            return (fzero, fzero)
        if re == fnan:
            return fnan
    # Recurrence
    w = to_int(re)
    n = int(0.4 * wp + 4 * m)
    s = mpc_zero
    if w < n:
        for k in xrange(w, n):
            t = mpc_pow_int(z, -m - 1, wp)
            s = mpc_add(s, t, wp)
            z = mpc_add_mpf(z, fone, wp)
    zm = mpc_pow_int(z, -m, wp)
    z2 = mpc_pow_int(z, -2, wp)
    # 1/m*(z+N)^m
    integral_term = mpc_div_mpf(zm, from_int(m), wp)
    s = mpc_add(s, integral_term, wp)
    # 1/2*(z+N)^(-(m+1))
    s = mpc_add(s, mpc_mul_mpf(mpc_div(zm, z, wp), fhalf, wp), wp)
    a = m + 1
    b = 2
    k = 1
    # Important: we want to sum up to the *relative* error,
    # not the absolute error, because psi^(m)(z) might be tiny
    magn = mpc_abs(s, 10)
    magn = magn[2] + magn[3]
    eps = mpf_shift(fone, magn - wp + 2)
    while 1:
        zm = mpc_mul(zm, z2, wp)
        bern = mpf_bernoulli(2 * k, wp)
        scal = mpf_mul_int(bern, a, wp)
        scal = mpf_div(scal, from_int(b), wp)
        term = mpc_mul_mpf(zm, scal, wp)
        s = mpc_add(s, term, wp)
        szterm = mpc_abs(term, 10)
        if k > 2 and mpf_le(szterm, eps):
            break
        #print k, to_str(szterm, 10), to_str(eps, 10)
        a *= (m + 2 * k) * (m + 2 * k + 1)
        b *= (2 * k + 1) * (2 * k + 2)
        k += 1
    # Scale and sign factor
    v = mpc_mul_mpf(s, mpf_gamma(from_int(m + 1), wp), prec, rnd)
    if not (m & 1):
        v = mpf_neg(v[0]), mpf_neg(v[1])
    return v
Esempio n. 5
0
def mpc_psi(m, z, prec, rnd=round_fast):
    """
    Computation of the polygamma function of arbitrary integer order
    m >= 0, for a complex argument z.
    """
    if m == 0:
        return mpc_psi0(z, prec, rnd)
    re, im = z
    wp = prec + 20
    sign, man, exp, bc = re
    if not man:
        if re == finf and im == fzero:
            return (fzero, fzero)
        if re == fnan:
            return fnan
    # Recurrence
    w = to_int(re)
    n = int(0.4*wp + 4*m)
    s = mpc_zero
    if w < n:
        for k in xrange(w, n):
            t = mpc_pow_int(z, -m-1, wp)
            s = mpc_add(s, t, wp)
            z = mpc_add_mpf(z, fone, wp)
    zm = mpc_pow_int(z, -m, wp)
    z2 = mpc_pow_int(z, -2, wp)
    # 1/m*(z+N)^m
    integral_term = mpc_div_mpf(zm, from_int(m), wp)
    s = mpc_add(s, integral_term, wp)
    # 1/2*(z+N)^(-(m+1))
    s = mpc_add(s, mpc_mul_mpf(mpc_div(zm, z, wp), fhalf, wp), wp)
    a = m + 1
    b = 2
    k = 1
    # Important: we want to sum up to the *relative* error,
    # not the absolute error, because psi^(m)(z) might be tiny
    magn = mpc_abs(s, 10)
    magn = magn[2]+magn[3]
    eps = mpf_shift(fone, magn-wp+2)
    while 1:
        zm = mpc_mul(zm, z2, wp)
        bern = mpf_bernoulli(2*k, wp)
        scal = mpf_mul_int(bern, a, wp)
        scal = mpf_div(scal, from_int(b), wp)
        term = mpc_mul_mpf(zm, scal, wp)
        s = mpc_add(s, term, wp)
        szterm = mpc_abs(term, 10)
        if k > 2 and mpf_le(szterm, eps):
            break
        #print k, to_str(szterm, 10), to_str(eps, 10)
        a *= (m+2*k)*(m+2*k+1)
        b *= (2*k+1)*(2*k+2)
        k += 1
    # Scale and sign factor
    v = mpc_mul_mpf(s, mpf_gamma(from_int(m+1), wp), prec, rnd)
    if not (m & 1):
        v = mpf_neg(v[0]), mpf_neg(v[1])
    return v
Esempio n. 6
0
def mpf_zeta_int(s, prec, rnd=round_fast):
    """
    Optimized computation of zeta(s) for an integer s.
    """
    wp = prec + 20
    s = int(s)
    if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
        return mpf_pos(zeta_int_cache[s][1], prec, rnd)
    if s < 2:
        if s == 1:
            raise ValueError("zeta(1) pole")
        if not s:
            return mpf_neg(fhalf)
        return mpf_div(mpf_bernoulli(-s + 1, wp), from_int(s - 1), prec, rnd)
    # 2^-s term vanishes?
    if s >= wp:
        return mpf_perturb(fone, 0, prec, rnd)
    # 5^-s term vanishes?
    elif s >= wp * 0.431:
        t = one = 1 << wp
        t += 1 << (wp - s)
        t += one // (MPZ_THREE**s)
        t += 1 << max(0, wp - s * 2)
        return from_man_exp(t, -wp, prec, rnd)
    else:
        # Fast enough to sum directly?
        # Even better, we use the Euler product (idea stolen from pari)
        m = (float(wp) / (s - 1) + 1)
        if m < 30:
            needed_terms = int(2.0**m + 1)
            if needed_terms < int(wp / 2.54 + 5) / 10:
                t = fone
                for k in list_primes(needed_terms):
                    #print k, needed_terms
                    powprec = int(wp - s * math.log(k, 2))
                    if powprec < 2:
                        break
                    a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec),
                                wp)
                    t = mpf_mul(t, a, wp)
                return mpf_div(fone, t, wp)
    # Use Borwein's algorithm
    n = int(wp / 2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    s = MPZ(s)
    for k in xrange(n):
        t += (((-1)**k * (d[k] - d[n])) << wp) // (k + 1)**s
    t = (t << wp) // (-d[n])
    t = (t << wp) // ((1 << wp) - (1 << (wp + 1 - s)))
    if (s in zeta_int_cache
            and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
        zeta_int_cache[s] = (wp, from_man_exp(t, -wp - wp))
    return from_man_exp(t, -wp - wp, prec, rnd)
Esempio n. 7
0
def mpf_zeta_int(s, prec, rnd=round_fast):
    """
    Optimized computation of zeta(s) for an integer s.
    """
    wp = prec + 20
    s = int(s)
    if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
        return mpf_pos(zeta_int_cache[s][1], prec, rnd)
    if s < 2:
        if s == 1:
            raise ValueError("zeta(1) pole")
        if not s:
            return mpf_neg(fhalf)
        return mpf_div(mpf_bernoulli(-s+1, wp), from_int(s-1), prec, rnd)
    # 2^-s term vanishes?
    if s >= wp:
        return mpf_perturb(fone, 0, prec, rnd)
    # 5^-s term vanishes?
    elif s >= wp*0.431:
        t = one = 1 << wp
        t += 1 << (wp - s)
        t += one // (MPZ_THREE ** s)
        t += 1 << max(0, wp - s*2)
        return from_man_exp(t, -wp, prec, rnd)
    else:
        # Fast enough to sum directly?
        # Even better, we use the Euler product (idea stolen from pari)
        m = (float(wp)/(s-1) + 1)
        if m < 30:
            needed_terms = int(2.0**m + 1)
            if needed_terms < int(wp/2.54 + 5) / 10:
                t = fone
                for k in list_primes(needed_terms):
                    #print k, needed_terms
                    powprec = int(wp - s*math.log(k,2))
                    if powprec < 2:
                        break
                    a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec), wp)
                    t = mpf_mul(t, a, wp)
                return mpf_div(fone, t, wp)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    s = MPZ(s)
    for k in xrange(n):
        t += (((-1)**k * (d[k] - d[n])) << wp) // (k+1)**s
    t = (t << wp) // (-d[n])
    t = (t << wp) // ((1 << wp) - (1 << (wp+1-s)))
    if (s in zeta_int_cache and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
        zeta_int_cache[s] = (wp, from_man_exp(t, -wp-wp))
    return from_man_exp(t, -wp-wp, prec, rnd)
Esempio n. 8
0
def exp_newton(x, prec):
    extra = 10
    r = mpf_exp(x, 60)
    start = 50
    prevp = start
    for p in giant_steps(start, prec+extra, 4):
        h = mpf_sub(x, mpf_log(r, p), p)
        h2 = mpf_mul(h, h, p)
        h3 = mpf_mul(h2, h, p)
        h4 = mpf_mul(h2, h2, p)
        t = mpf_add(h, mpf_shift(h2, -1), p)
        t = mpf_add(t, mpf_div(h3, from_int(6, p), p), p)
        t = mpf_add(t, mpf_div(h4, from_int(24, p), p), p)
        t = mpf_mul(r, t, p)
        r = mpf_add(r, t, p)
    return r
Esempio n. 9
0
def khinchin_fixed(prec):
    wp = int(prec + prec**0.5 + 15)
    s = MP_ZERO
    fac = from_int(4)
    t = ONE = MP_ONE << wp
    pi = mpf_pi(wp)
    pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2)
    n = 1
    while 1:
        zeta2n = mpf_abs(mpf_bernoulli(2 * n, wp))
        zeta2n = mpf_mul(zeta2n, pipow, wp)
        zeta2n = mpf_div(zeta2n, fac, wp)
        zeta2n = to_fixed(zeta2n, wp)
        term = (((zeta2n - ONE) * t) // n) >> wp
        if term < 100:
            break
        #if not n % 100:
        #    print n, nstr(ln(term))
        s += term
        t += ONE // (2 * n + 1) - ONE // (2 * n)
        n += 1
        fac = mpf_mul_int(fac, (2 * n) * (2 * n - 1), wp)
        pipow = mpf_mul(pipow, twopi2, wp)
    s = (s << wp) // ln2_fixed(wp)
    K = mpf_exp(from_man_exp(s, -wp), wp)
    K = to_fixed(K, prec)
    return K
Esempio n. 10
0
def khinchin_fixed(prec):
    wp = int(prec + prec**0.5 + 15)
    s = MPZ_ZERO
    fac = from_int(4)
    t = ONE = MPZ_ONE << wp
    pi = mpf_pi(wp)
    pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2)
    n = 1
    while 1:
        zeta2n = mpf_abs(mpf_bernoulli(2*n, wp))
        zeta2n = mpf_mul(zeta2n, pipow, wp)
        zeta2n = mpf_div(zeta2n, fac, wp)
        zeta2n = to_fixed(zeta2n, wp)
        term = (((zeta2n - ONE) * t) // n) >> wp
        if term < 100:
            break
        #if not n % 10:
        #    print n, math.log(int(abs(term)))
        s += term
        t += ONE//(2*n+1) - ONE//(2*n)
        n += 1
        fac = mpf_mul_int(fac, (2*n)*(2*n-1), wp)
        pipow = mpf_mul(pipow, twopi2, wp)
    s = (s << wp) // ln2_fixed(wp)
    K = mpf_exp(from_man_exp(s, -wp), wp)
    K = to_fixed(K, prec)
    return K
Esempio n. 11
0
 def __rsub__(s, t):
     prec, rounding = prec_rounding
     if type(t) in int_types:
         return make_mpf(mpf_sub(from_int(t), s._mpf_, prec, rounding))
     t = mpf_convert_lhs(t)
     if t is NotImplemented:
         return t
     return t - s
Esempio n. 12
0
 def __rsub__(s, t):
     prec, rounding = prec_rounding
     if type(t) in int_types:
         return make_mpf(mpf_sub(from_int(t), s._mpf_, prec, rounding))
     t = mpf_convert_lhs(t)
     if t is NotImplemented:
         return t
     return t - s
Esempio n. 13
0
def calc_spouge_coefficients(a, prec):
    wp = prec + int(a * 1.4)
    c = [0] * a
    # b = exp(a-1)
    b = mpf_exp(from_int(a - 1), wp)
    # e = exp(1)
    e = mpf_exp(fone, wp)
    # sqrt(2*pi)
    sq2pi = mpf_sqrt(mpf_shift(mpf_pi(wp), 1), wp)
    c[0] = to_fixed(sq2pi, prec)
    for k in xrange(1, a):
        # c[k] = ((-1)**(k-1) * (a-k)**k) * b / sqrt(a-k)
        term = mpf_mul_int(b, ((-1)**(k - 1) * (a - k)**k), wp)
        term = mpf_div(term, mpf_sqrt(from_int(a - k), wp), wp)
        c[k] = to_fixed(term, prec)
        # b = b / (e * k)
        b = mpf_div(b, mpf_mul(e, from_int(k), wp), wp)
    return c
Esempio n. 14
0
def calc_spouge_coefficients(a, prec):
    wp = prec + int(a*1.4)
    c = [0] * a
    # b = exp(a-1)
    b = mpf_exp(from_int(a-1), wp)
    # e = exp(1)
    e = mpf_exp(fone, wp)
    # sqrt(2*pi)
    sq2pi = mpf_sqrt(mpf_shift(mpf_pi(wp), 1), wp)
    c[0] = to_fixed(sq2pi, prec)
    for k in xrange(1, a):
        # c[k] = ((-1)**(k-1) * (a-k)**k) * b / sqrt(a-k)
        term = mpf_mul_int(b, ((-1)**(k-1) * (a-k)**k), wp)
        term = mpf_div(term, mpf_sqrt(from_int(a-k), wp), wp)
        c[k] = to_fixed(term, prec)
        # b = b / (e * k)
        b = mpf_div(b, mpf_mul(e, from_int(k), wp), wp)
    return c
Esempio n. 15
0
def mpf_gamma(x, prec, rounding=round_fast, p1=1):
    """
    Computes the gamma function of a real floating-point argument.
    With p1=0, computes a factorial instead.
    """
    sign, man, exp, bc = x
    if not man:
        if x == finf:
            return finf
        if x == fninf or x == fnan:
            return fnan
    # More precision is needed for enormous x. TODO:
    # use Stirling's formula + Euler-Maclaurin summation
    size = exp + bc
    if size > 5:
        size = int(size * math.log(size, 2))
    wp = prec + max(0, size) + 15
    if exp >= 0:
        if sign or (p1 and not man):
            raise ValueError("gamma function pole")
        # A direct factorial is fastest
        if exp + bc <= 10:
            return from_int(int_fac((man << exp) - p1), prec, rounding)
    reflect = sign or exp + bc < -1
    if p1:
        # Should be done exactly!
        x = mpf_sub(x, fone, bc - exp + 2)
    # x < 0.25
    if reflect:
        # gamma = pi / (sin(pi*x) * gamma(1-x))
        wp += 15
        pix = mpf_mul(x, mpf_pi(wp), wp)
        t = mpf_sin_pi(x, wp)
        g = mpf_gamma(mpf_sub(fone, x, wp), wp)
        return mpf_div(pix, mpf_mul(t, g, wp), prec, rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_real(x, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    xpa = mpf_add(x, from_int(a), wp)
    logxpa = mpf_log(xpa, wp)
    xph = mpf_add(x, fhalf, wp)
    t = mpf_sub(mpf_mul(logxpa, xph, wp), xpa, wp)
    t = mpf_mul(mpf_exp(t, wp), s, prec, rounding)
    return t
Esempio n. 16
0
def mpf_gamma(x, prec, rounding=round_fast, p1=1):
    """
    Computes the gamma function of a real floating-point argument.
    With p1=0, computes a factorial instead.
    """
    sign, man, exp, bc = x
    if not man:
        if x == finf:
            return finf
        if x == fninf or x == fnan:
            return fnan
    # More precision is needed for enormous x. TODO:
    # use Stirling's formula + Euler-Maclaurin summation
    size = exp + bc
    if size > 5:
        size = int(size * math.log(size,2))
    wp = prec + max(0, size) + 15
    if exp >= 0:
        if sign or (p1 and not man):
            raise ValueError("gamma function pole")
        # A direct factorial is fastest
        if exp + bc <= 10:
            return from_int(ifac((man<<exp)-p1), prec, rounding)
    reflect = sign or exp+bc < -1
    if p1:
        # Should be done exactly!
        x = mpf_sub(x, fone)
    # x < 0.25
    if reflect:
        # gamma = pi / (sin(pi*x) * gamma(1-x))
        wp += 15
        pix = mpf_mul(x, mpf_pi(wp), wp)
        t = mpf_sin_pi(x, wp)
        g = mpf_gamma(mpf_sub(fone, x), wp)
        return mpf_div(pix, mpf_mul(t, g, wp), prec, rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_real(x, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    xpa = mpf_add(x, from_int(a), wp)
    logxpa = mpf_log(xpa, wp)
    xph = mpf_add(x, fhalf, wp)
    t = mpf_sub(mpf_mul(logxpa, xph, wp), xpa, wp)
    t = mpf_mul(mpf_exp(t, wp), s, prec, rounding)
    return t
Esempio n. 17
0
def mpi_pow(s, t, prec):
    ta, tb = t
    if ta == tb and ta not in (finf, fninf):
        if ta == from_int(to_int(ta)):
            return mpi_pow_int(s, to_int(ta), prec)
        if ta == fhalf:
            return mpi_sqrt(s, prec)
    u = mpi_log(s, prec + 20)
    v = mpi_mul(u, t, prec + 20)
    return mpi_exp(v, prec)
Esempio n. 18
0
def mpi_pow(s, t, prec):
    ta, tb = t
    if ta == tb and ta not in (finf, fninf):
        if ta == from_int(to_int(ta)):
            return mpi_pow_int(s, to_int(ta), prec)
        if ta == fhalf:
            return mpi_sqrt(s, prec)
    u = mpi_log(s, prec + 20)
    v = mpi_mul(u, t, prec + 20)
    return mpi_exp(v, prec)
Esempio n. 19
0
def mpf_convert_arg(x, prec, rounding):
    if isinstance(x, int_types): return from_int(x)
    if isinstance(x, float): return from_float(x)
    if isinstance(x, basestring): return from_str(x, prec, rounding)
    if isinstance(x, constant): return x.func(prec, rounding)
    if hasattr(x, '_mpf_'): return x._mpf_
    if hasattr(x, '_mpmath_'):
        t = convert_lossless(x._mpmath_(prec, rounding))
        if isinstance(t, mpf):
            return t._mpf_
    raise TypeError("cannot create mpf from " + repr(x))
Esempio n. 20
0
def mpf_convert_rhs(x):
    if isinstance(x, int_types): return from_int(x)
    if isinstance(x, float): return from_float(x)
    if isinstance(x, complex_types): return mpc(x)
    if hasattr(x, '_mpf_'): return x._mpf_
    if hasattr(x, '_mpmath_'):
        t = convert_lossless(x._mpmath_(*prec_rounding))
        if isinstance(t, mpf):
            return t._mpf_
        return t
    return NotImplemented
Esempio n. 21
0
def mpc_gamma(x, prec, rounding=round_fast, p1=1):
    re, im = x
    if im == fzero:
        return mpf_gamma(re, prec, rounding, p1), fzero
    # More precision is needed for enormous x.
    sign, man, exp, bc = re
    isign, iman, iexp, ibc = im
    if re == fzero:
        size = iexp + ibc
    else:
        size = max(exp + bc, iexp + ibc)
    if size > 5:
        size = int(size * math.log(size, 2))
    reflect = sign or (exp + bc < -1)
    wp = prec + max(0, size) + 25
    # Near x = 0 pole (TODO: other poles)
    if p1:
        if size < -prec - 5:
            return mpc_add_mpf(mpc_div(mpc_one, x, 2*prec+10), \
                mpf_neg(mpf_euler(2*prec+10)), prec, rounding)
        elif size < -5:
            wp += (-2 * size)
    if p1:
        # Should be done exactly!
        re_orig = re
        re = mpf_sub(re, fone, bc + abs(exp) + 2)
        x = re, im
    if reflect:
        # Reflection formula
        wp += 15
        pi = mpf_pi(wp), fzero
        pix = mpc_mul(x, pi, wp)
        t = mpc_sin_pi(x, wp)
        u = mpc_sub(mpc_one, x, wp)
        g = mpc_gamma(u, wp)
        w = mpc_mul(t, g, wp)
        return mpc_div(pix, w, wp)
    # Extremely close to the real line?
    # XXX: reflection formula
    if iexp + ibc < -wp:
        a = mpf_gamma(re_orig, wp)
        b = mpf_psi0(re_orig, wp)
        gamma_diff = mpf_div(a, b, wp)
        return mpf_pos(a, prec, rounding), mpf_mul(gamma_diff, im, prec,
                                                   rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_complex(re, im, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    repa = mpf_add(re, from_int(a), wp)
    logxpa = mpc_log((repa, im), wp)
    reph = mpf_add(re, fhalf, wp)
    t = mpc_sub(mpc_mul(logxpa, (reph, im), wp), (repa, im), wp)
    t = mpc_mul(mpc_exp(t, wp), s, prec, rounding)
    return t
Esempio n. 22
0
def mpf_convert_arg(x, prec, rounding):
    if isinstance(x, int_types): return from_int(x)
    if isinstance(x, float): return from_float(x)
    if isinstance(x, basestring): return from_str(x, prec, rounding)
    if isinstance(x, constant): return x.func(prec, rounding)
    if hasattr(x, '_mpf_'): return x._mpf_
    if hasattr(x, '_mpmath_'):
        t = mpmathify(x._mpmath_(prec, rounding))
        if isinstance(t, mpf):
            return t._mpf_
    raise TypeError("cannot create mpf from " + repr(x))
Esempio n. 23
0
def mpf_convert_rhs(x):
    if isinstance(x, int_types): return from_int(x)
    if isinstance(x, float): return from_float(x)
    if isinstance(x, complex_types): return mpc(x)
    if hasattr(x, '_mpf_'): return x._mpf_
    if hasattr(x, '_mpmath_'):
        t = mpmathify(x._mpmath_(*prec_rounding))
        if isinstance(t, mpf):
            return t._mpf_
        return t
    return NotImplemented
Esempio n. 24
0
def log_int_fixed(n, prec):
    if n in log_int_cache:
        value, vprec = log_int_cache[n]
        if vprec >= prec:
            return value >> (vprec - prec)
    extra = 30
    vprec = prec + extra
    v = to_fixed(mpf_log(from_int(n), vprec+5), vprec)
    if n < MAX_LOG_INT_CACHE:
        log_int_cache[n] = (v, vprec)
    return v >> extra
Esempio n. 25
0
def mpc_nthroot_fixed(a, b, n, prec):
    # a, b signed integers at fixed precision prec
    start = 50
    a1 = int(rshift(a, prec - n * start))
    b1 = int(rshift(b, prec - n * start))
    try:
        r = (a1 + 1j * b1)**(1.0 / n)
        re = r.real
        im = r.imag
        # XXX: workaround bug in gmpy
        if abs(re) < 0.1: re = 0
        if abs(im) < 0.1: im = 0
        re = MP_BASE(re)
        im = MP_BASE(im)
    except OverflowError:
        a1 = from_int(a1, start)
        b1 = from_int(b1, start)
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, start)
        re, im = mpc_pow((a1, b1), (nth, fzero), start)
        re = to_int(re)
        im = to_int(im)
    extra = 10
    prevp = start
    extra1 = n
    for p in giant_steps(start, prec + extra):
        # this is slow for large n, unlike int_pow_fixed
        re2, im2 = complex_int_pow(re, im, n - 1)
        re2 = rshift(re2, (n - 1) * prevp - p - extra1)
        im2 = rshift(im2, (n - 1) * prevp - p - extra1)
        r4 = (re2 * re2 + im2 * im2) >> (p + extra1)
        ap = rshift(a, prec - p)
        bp = rshift(b, prec - p)
        rec = (ap * re2 + bp * im2) >> p
        imc = (-ap * im2 + bp * re2) >> p
        reb = (rec << p) // r4
        imb = (imc << p) // r4
        re = (reb + (n - 1) * lshift(re, p - prevp)) // n
        im = (imb + (n - 1) * lshift(im, p - prevp)) // n
        prevp = p
    return re, im
Esempio n. 26
0
def mpc_nthroot_fixed(a, b, n, prec):
    # a, b signed integers at fixed precision prec
    start = 50
    a1 = int(rshift(a, prec - n*start))
    b1 = int(rshift(b, prec - n*start))
    try:
        r = (a1 + 1j * b1)**(1.0/n)
        re = r.real
        im = r.imag
        # XXX: workaround bug in gmpy
        if abs(re) < 0.1: re = 0
        if abs(im) < 0.1: im = 0
        re = MP_BASE(re)
        im = MP_BASE(im)
    except OverflowError:
        a1 = from_int(a1, start)
        b1 = from_int(b1, start)
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, start)
        re, im = mpc_pow((a1, b1), (nth, fzero), start)
        re = to_int(re)
        im = to_int(im)
    extra = 10
    prevp = start
    extra1 = n
    for p in giant_steps(start, prec+extra):
        # this is slow for large n, unlike int_pow_fixed
        re2, im2 = complex_int_pow(re, im, n-1)
        re2 = rshift(re2, (n-1)*prevp - p - extra1)
        im2 = rshift(im2, (n-1)*prevp - p - extra1)
        r4 = (re2*re2 + im2*im2) >> (p + extra1)
        ap = rshift(a, prec - p)
        bp = rshift(b, prec - p)
        rec = (ap * re2 + bp * im2) >> p
        imc = (-ap * im2 + bp * re2) >> p
        reb = (rec << p) // r4
        imb = (imc << p) // r4
        re = (reb + (n-1)*lshift(re, p-prevp))//n
        im = (imb + (n-1)*lshift(im, p-prevp))//n
        prevp = p
    return re, im
Esempio n. 27
0
def nthroot_fixed(y, n, prec, exp1):
    start = 50
    try:
        y1 = rshift(y, prec - n*start)
        r = MP_BASE(int(y1**(1.0/n)))
    except OverflowError:
        y1 = from_int(y1, start)
        fn = from_int(n)
        fn = mpf_rdiv_int(1, fn, start)
        r = mpf_pow(y1, fn, start)
        r = to_int(r)
    extra = 10
    extra1 = n
    prevp = start
    for p in giant_steps(start, prec+extra):
        pm, pe = int_pow_fixed(r, n-1, prevp)
        r2 = rshift(pm, (n-1)*prevp - p - pe - extra1)
        B = lshift(y, 2*p-prec+extra1)//r2
        r = (B + (n-1) * lshift(r, p-prevp))//n
        prevp = p
    return r
Esempio n. 28
0
def mpc_gamma(x, prec, rounding=round_fast, p1=1):
    re, im = x
    if im == fzero:
        return mpf_gamma(re, prec, rounding, p1), fzero
    # More precision is needed for enormous x.
    sign, man, exp, bc = re
    isign, iman, iexp, ibc = im
    if re == fzero:
        size = iexp+ibc
    else:
        size = max(exp+bc, iexp+ibc)
    if size > 5:
        size = int(size * math.log(size,2))
    reflect = sign or (exp+bc < -1)
    wp = prec + max(0, size) + 25
    # Near x = 0 pole (TODO: other poles)
    if p1:
        if size < -prec-5:
            return mpc_add_mpf(mpc_div(mpc_one, x, 2*prec+10), \
                mpf_neg(mpf_euler(2*prec+10)), prec, rounding)
        elif size < -5:
            wp += (-2*size)
    if p1:
        # Should be done exactly!
        re_orig = re
        re = mpf_sub(re, fone, bc+abs(exp)+2)
        x = re, im
    if reflect:
        # Reflection formula
        wp += 15
        pi = mpf_pi(wp), fzero
        pix = mpc_mul(x, pi, wp)
        t = mpc_sin_pi(x, wp)
        u = mpc_sub(mpc_one, x, wp)
        g = mpc_gamma(u, wp)
        w = mpc_mul(t, g, wp)
        return mpc_div(pix, w, wp)
    # Extremely close to the real line?
    # XXX: reflection formula
    if iexp+ibc < -wp:
        a = mpf_gamma(re_orig, wp)
        b = mpf_psi0(re_orig, wp)
        gamma_diff = mpf_div(a, b, wp)
        return mpf_pos(a, prec, rounding), mpf_mul(gamma_diff, im, prec, rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_complex(re, im, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    repa = mpf_add(re, from_int(a), wp)
    logxpa = mpc_log((repa, im), wp)
    reph = mpf_add(re, fhalf, wp)
    t = mpc_sub(mpc_mul(logxpa, (reph, im), wp), (repa, im), wp)
    t = mpc_mul(mpc_exp(t, wp), s, prec, rounding)
    return t
Esempio n. 29
0
def nthroot_fixed(y, n, prec, exp1):
    start = 50
    try:
        y1 = rshift(y, prec - n*start)
        r = MP_BASE(y1**(1.0/n))
    except OverflowError:
        y1 = from_int(y1, start)
        fn = from_int(n)
        fn = mpf_rdiv_int(1, fn, start)
        r = mpf_pow(y1, fn, start)
        r = to_int(r)
    extra = 10
    extra1 = n
    prevp = start
    for p in giant_steps(start, prec+extra):
        pm, pe = int_pow_fixed(r, n-1, prevp)
        r2 = rshift(pm, (n-1)*prevp - p - pe - extra1)
        B = lshift(y, 2*p-prec+extra1)//r2
        r = (B + (n-1) * lshift(r, p-prevp))//n
        prevp = p
    return r
Esempio n. 30
0
def mpi_from_str_a_b(x, y, percent, prec):
    wp = prec + 20
    xa = from_str(x, wp, round_floor)
    xb = from_str(x, wp, round_ceiling)
    #ya = from_str(y, wp, round_floor)
    y = from_str(y, wp, round_ceiling)
    assert mpf_ge(y, fzero)
    if percent:
        y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling)
        y = mpf_div(y, from_int(100), wp, round_ceiling)
    a = mpf_sub(xa, y, prec, round_floor)
    b = mpf_add(xb, y, prec, round_ceiling)
    return a, b
Esempio n. 31
0
def mpi_from_str_a_b(x, y, percent, prec):
    wp = prec + 20
    xa = from_str(x, wp, round_floor)
    xb = from_str(x, wp, round_ceiling)
    #ya = from_str(y, wp, round_floor)
    y = from_str(y, wp, round_ceiling)
    assert mpf_ge(y, fzero)
    if percent:
        y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling)
        y = mpf_div(y, from_int(100), wp, round_ceiling)
    a = mpf_sub(xa, y, prec, round_floor)
    b = mpf_add(xb, y, prec, round_ceiling)
    return a, b
Esempio n. 32
0
def glaisher_fixed(prec):
    wp = prec + 30
    # Number of direct terms to sum before applying the Euler-Maclaurin
    # formula to the tail. TODO: choose more intelligently
    N = int(0.33 * prec + 5)
    ONE = MP_ONE << wp
    # Euler-Maclaurin, step 1: sum log(k)/k**2 for k from 2 to N-1
    s = MP_ZERO
    for k in range(2, N):
        #print k, N
        s += log_int_fixed(k, wp) // k**2
    logN = log_int_fixed(N, wp)
    #logN = to_fixed(mpf_log(from_int(N), wp+20), wp)
    # E-M step 2: integral of log(x)/x**2 from N to inf
    s += (ONE + logN) // N
    # E-M step 3: endpoint correction term f(N)/2
    s += logN // (N**2 * 2)
    # E-M step 4: the series of derivatives
    pN = N**3
    a = 1
    b = -2
    j = 3
    fac = from_int(2)
    k = 1
    while 1:
        # D(2*k-1) * B(2*k) / fac(2*k) [D(n) = nth derivative]
        D = ((a << wp) + b * logN) // pN
        D = from_man_exp(D, -wp)
        B = mpf_bernoulli(2 * k, wp)
        term = mpf_mul(B, D, wp)
        term = mpf_div(term, fac, wp)
        term = to_fixed(term, wp)
        if abs(term) < 100:
            break
        #if not k % 10:
        #    print k, math.log(int(abs(term)), 10)
        s -= term
        # Advance derivative twice
        a, b, pN, j = b - a * j, -j * b, pN * N, j + 1
        a, b, pN, j = b - a * j, -j * b, pN * N, j + 1
        k += 1
        fac = mpf_mul_int(fac, (2 * k) * (2 * k - 1), wp)
    # A = exp((6*s/pi**2 + log(2*pi) + euler)/12)
    pi = pi_fixed(wp)
    s *= 6
    s = (s << wp) // (pi**2 >> wp)
    s += euler_fixed(wp)
    s += to_fixed(mpf_log(from_man_exp(2 * pi, -wp), wp), wp)
    s //= 12
    A = mpf_exp(from_man_exp(s, -wp), wp)
    return to_fixed(A, prec)
Esempio n. 33
0
def glaisher_fixed(prec):
    wp = prec + 30
    # Number of direct terms to sum before applying the Euler-Maclaurin
    # formula to the tail. TODO: choose more intelligently
    N = int(0.33*prec + 5)
    ONE = MPZ_ONE << wp
    # Euler-Maclaurin, step 1: sum log(k)/k**2 for k from 2 to N-1
    s = MPZ_ZERO
    for k in range(2, N):
        #print k, N
        s += log_int_fixed(k, wp) // k**2
    logN = log_int_fixed(N, wp)
    #logN = to_fixed(mpf_log(from_int(N), wp+20), wp)
    # E-M step 2: integral of log(x)/x**2 from N to inf
    s += (ONE + logN) // N
    # E-M step 3: endpoint correction term f(N)/2
    s += logN // (N**2 * 2)
    # E-M step 4: the series of derivatives
    pN = N**3
    a = 1
    b = -2
    j = 3
    fac = from_int(2)
    k = 1
    while 1:
        # D(2*k-1) * B(2*k) / fac(2*k) [D(n) = nth derivative]
        D = ((a << wp) + b*logN) // pN
        D = from_man_exp(D, -wp)
        B = mpf_bernoulli(2*k, wp)
        term = mpf_mul(B, D, wp)
        term = mpf_div(term, fac, wp)
        term = to_fixed(term, wp)
        if abs(term) < 100:
            break
        #if not k % 10:
        #    print k, math.log(int(abs(term)), 10)
        s -= term
        # Advance derivative twice
        a, b, pN, j = b-a*j, -j*b, pN*N, j+1
        a, b, pN, j = b-a*j, -j*b, pN*N, j+1
        k += 1
        fac = mpf_mul_int(fac, (2*k)*(2*k-1), wp)
    # A = exp((6*s/pi**2 + log(2*pi) + euler)/12)
    pi = pi_fixed(wp)
    s *= 6
    s = (s << wp) // (pi**2 >> wp)
    s += euler_fixed(wp)
    s += to_fixed(mpf_log(from_man_exp(2*pi, -wp), wp), wp)
    s //= 12
    A = mpf_exp(from_man_exp(s, -wp), wp)
    return to_fixed(A, prec)
Esempio n. 34
0
def mertens_fixed(prec):
    wp = prec + 20
    m = 2
    s = mpf_euler(wp)
    while 1:
        t = mpf_zeta_int(m, wp)
        if t == fone:
            break
        t = mpf_log(t, wp)
        t = mpf_mul_int(t, moebius(m), wp)
        t = mpf_div(t, from_int(m), wp)
        s = mpf_add(s, t)
        m += 1
    return to_fixed(s, prec)
Esempio n. 35
0
def twinprime_fixed(prec):
    def I(n):
        return sum(moebius(d)<<(n//d) for d in xrange(1,n+1) if not n%d)//n
    wp = 2*prec + 30
    res = fone
    primes = [from_rational(1,p,wp) for p in [2,3,5,7]]
    ppowers = [mpf_mul(p,p,wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec+10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3*15*35), wp)
    res = mpf_div(res, from_int(4*16*36), wp)
    return to_fixed(res, prec)
Esempio n. 36
0
def mertens_fixed(prec):
    wp = prec + 20
    m = 2
    s = mpf_euler(wp)
    while 1:
        t = mpf_zeta_int(m, wp)
        if t == fone:
            break
        t = mpf_log(t, wp)
        t = mpf_mul_int(t, moebius(m), wp)
        t = mpf_div(t, from_int(m), wp)
        s = mpf_add(s, t)
        m += 1
    return to_fixed(s, prec)
Esempio n. 37
0
def convert_lossless(x, strings=True):
    """Attempt to convert x to an mpf or mpc losslessly. If x is an
    mpf or mpc, return it unchanged. If x is an int, create an mpf with
    sufficient precision to represent it exactly. If x is a str, just
    convert it to an mpf with the current working precision (perhaps
    this should be done differently...)"""
    if isinstance(x, mpnumeric): return x
    if isinstance(x, int_types): return make_mpf(from_int(x))
    if isinstance(x, float): return make_mpf(from_float(x))
    if isinstance(x, complex): return mpc(x)
    if strings and isinstance(x, basestring): return make_mpf(from_str(x, *prec_rounding))
    if hasattr(x, '_mpf_'): return make_mpf(x._mpf_)
    if hasattr(x, '_mpc_'): return make_mpc(x._mpc_)
    if hasattr(x, '_mpmath_'): return convert_lossless(x._mpmath_(*prec_rounding))
    raise TypeError("cannot create mpf from " + repr(x))
Esempio n. 38
0
def mpmathify(x, strings=True):
    """
    Converts *x* to an ``mpf`` or ``mpc``. If *x* is of type ``mpf``,
    ``mpc``, ``int``, ``float``, ``complex``, the conversion
    will be performed losslessly.

    If *x* is a string, the result will be rounded to the present
    working precision. Strings representing fractions or complex
    numbers are permitted.

        >>> from sympy.mpmath import *
        >>> mp.dps = 15
        >>> mpmathify(3.5)
        mpf('3.5')
        >>> mpmathify('2.1')
        mpf('2.1000000000000001')
        >>> mpmathify('3/4')
        mpf('0.75')
        >>> mpmathify('2+3j')
        mpc(real='2.0', imag='3.0')

    """
    if isinstance(x, mpnumeric): return x
    if isinstance(x, int_types): return make_mpf(from_int(x))
    if isinstance(x, float): return make_mpf(from_float(x))
    if isinstance(x, complex): return mpc(x)
    if strings and isinstance(x, basestring):
        try:
            return make_mpf(from_str(x, *prec_rounding))
        except Exception, e:
            if '/' in x:
                fract = x.split('/')
                assert len(fract) == 2
                return mpmathify(fract[0]) / mpmathify(fract[1])
            if 'j' in x.lower():
                x = x.lower().replace(' ', '')
                match = get_complex.match(x)
                re = match.group('re')
                if not re:
                    re = 0
                im = match.group('im').rstrip('j')
                return mpc(mpmathify(re),
                           mpmathify(im))
            raise e
Esempio n. 39
0
def log_int_fixed(n, prec, ln2=None):
    """
    Fast computation of log(n), caching the value for small n,
    intended for zeta sums.
    """
    if n in log_int_cache:
        value, vprec = log_int_cache[n]
        if vprec >= prec:
            return value >> (vprec - prec)
    wp = prec + 10
    if wp <= LOG_TAYLOR_SHIFT:
        if ln2 is None:
            ln2 = ln2_fixed(wp)
        r = bitcount(n)
        x = n << (wp - r)
        v = log_taylor_cached(x, wp) + r * ln2
    else:
        v = to_fixed(mpf_log(from_int(n), wp + 5), wp)
    if n < MAX_LOG_INT_CACHE:
        log_int_cache[n] = (v, wp)
    return v >> (wp - prec)
Esempio n. 40
0
def log_int_fixed(n, prec, ln2=None):
    """
    Fast computation of log(n), caching the value for small n,
    intended for zeta sums.
    """
    if n in log_int_cache:
        value, vprec = log_int_cache[n]
        if vprec >= prec:
            return value >> (vprec - prec)
    wp = prec + 10
    if wp <= LOG_TAYLOR_SHIFT:
        if ln2 is None:
            ln2 = ln2_fixed(wp)
        r = bitcount(n)
        x = n << (wp - r)
        v = log_taylor_cached(x, wp) + r * ln2
    else:
        v = to_fixed(mpf_log(from_int(n), wp + 5), wp)
    if n < MAX_LOG_INT_CACHE:
        log_int_cache[n] = (v, wp)
    return v >> (wp - prec)
Esempio n. 41
0
File: libmpc.py Progetto: vks/sympy
def mpc_nthroot(z, n, prec, rnd=round_fast):
    """
    Complex n-th root.

    Use Newton method as in the real case when it is faster,
    otherwise use z**(1/n)
    """
    a, b = z
    if a[0] == 0 and b == fzero:
        re = mpf_nthroot(a, n, prec, rnd)
        return (re, fzero)
    if n < 2:
        if n == 0:
            return mpc_one
        if n == 1:
            return mpc_pos((a, b), prec, rnd)
        if n == -1:
            return mpc_div(mpc_one, (a, b), prec, rnd)
        inverse = mpc_nthroot((a, b), -n, prec + 5, reciprocal_rnd[rnd])
        return mpc_div(mpc_one, inverse, prec, rnd)
    if n <= 20:
        prec2 = int(1.2 * (prec + 10))
        asign, aman, aexp, abc = a
        bsign, bman, bexp, bbc = b
        pf = mpc_abs((a, b), prec)
        if pf[-2] + pf[-1] > -10 and pf[-2] + pf[-1] < prec:
            af = to_fixed(a, prec2)
            bf = to_fixed(b, prec2)
            re, im = mpc_nthroot_fixed(af, bf, n, prec2)
            extra = 10
            re = from_man_exp(re, -prec2 - extra, prec2, rnd)
            im = from_man_exp(im, -prec2 - extra, prec2, rnd)
            return re, im
    fn = from_int(n)
    prec2 = prec + 10 + 10
    nth = mpf_rdiv_int(1, fn, prec2)
    re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
    re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
    im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
    return re, im
Esempio n. 42
0
def mpc_nthroot(z, n, prec, rnd=round_fast):
    """
    Complex n-th root.

    Use Newton method as in the real case when it is faster,
    otherwise use z**(1/n)
    """
    a, b = z
    if a[0] == 0 and b == fzero:
        re = mpf_nthroot(a, n, prec, rnd)
        return (re, fzero)
    if n < 2:
        if n == 0:
            return mpc_one
        if n == 1:
            return mpc_pos((a, b), prec, rnd)
        if n == -1:
            return mpc_div(mpc_one, (a, b), prec, rnd)
        inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd])
        return mpc_div(mpc_one, inverse, prec, rnd)
    if n <= 20:
        prec2 = int(1.2 * (prec + 10))
        asign, aman, aexp, abc = a
        bsign, bman, bexp, bbc = b
        pf = mpc_abs((a,b), prec)
        if pf[-2] + pf[-1] > -10  and pf[-2] + pf[-1] < prec:
            af = to_fixed(a, prec2)
            bf = to_fixed(b, prec2)
            re, im = mpc_nthroot_fixed(af, bf, n, prec2)
            extra = 10
            re = from_man_exp(re, -prec2-extra, prec2, rnd)
            im = from_man_exp(im, -prec2-extra, prec2, rnd)
            return re, im
    fn = from_int(n)
    prec2 = prec+10 + 10
    nth = mpf_rdiv_int(1, fn, prec2)
    re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
    re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
    im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
    return re, im
Esempio n. 43
0
def bernfrac(n):
    """
    Computes integers (p,q) such that p/q = B_n exactly, where
    B_n denotes the nth Bernoulli number.

    Use bernoulli(n) to get a floating-point approximation
    instead of the exact fraction (much faster for large n).
    """
    n = int(n)
    if n < 3:
        return [(1, 1), (-1, 2), (1, 6)][n]
    if n & 1:
        return (0, 1)
    q = 1
    for k in list_primes(n+1):
        if not (n % (k-1)):
            q *= k
    prec = bernoulli_size(n) + int(math.log(q,2)) + 20
    b = mpf_bernoulli(n, prec)
    p = mpf_mul(b, from_int(q))
    pint = to_int(p, round_nearest)
    return (pint, q)
Esempio n. 44
0
def mpf_fibonacci(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fninf:
            return fnan
        return x
    # F(2^n) ~= 2^(2^n)
    size = abs(exp+bc)
    if exp >= 0:
        # Exact
        if size < 10 or size <= bitcount(prec):
            return from_int(ifib(to_int(x)), prec, rnd)
    # Use the modified Binet formula
    wp = prec + size + 20
    a = mpf_phi(wp)
    b = mpf_add(mpf_shift(a, 1), fnone, wp)
    u = mpf_pow(a, x, wp)
    v = mpf_cos_pi(x, wp)
    v = mpf_div(v, u, wp)
    u = mpf_sub(u, v, wp)
    u = mpf_div(u, b, prec, rnd)
    return u
Esempio n. 45
0
def bernfrac(n):
    """
    Computes integers (p,q) such that p/q = B_n exactly, where
    B_n denotes the nth Bernoulli number.

    Use bernoulli(n) to get a floating-point approximation
    instead of the exact fraction (much faster for large n).
    """
    n = int(n)
    if n < 3:
        return [(1, 1), (-1, 2), (1, 6)][n]
    if n & 1:
        return (0, 1)
    q = 1
    for k in list_primes(n + 1):
        if not (n % (k - 1)):
            q *= k
    prec = bernoulli_size(n) + int(math.log(q, 2)) + 20
    b = mpf_bernoulli(n, prec)
    p = mpf_mul(b, from_int(q))
    pint = to_int(p, round_nearest)
    return (pint, q)
Esempio n. 46
0
def mpf_nthroot(s, n, prec, rnd=round_fast):
    """nth-root of a positive number

    Use the Newton method when faster, otherwise use x**(1/n)
    """
    sign, man, exp, bc = s
    if sign:
        raise ComplexResult("nth root of a negative number")
    if not man:
        if s == fnan:
            return fnan
        if s == fzero:
            if n > 0:
                return fzero
            if n == 0:
                return fone
            return finf
        # Infinity
        if not n:
            return fnan
        if n < 0:
            return fzero
        return finf
    flag_inverse = False
    if n < 2:
        if n == 0:
            return fone
        if n == 1:
            return mpf_pos(s, prec, rnd)
        if n == -1:
            return mpf_div(fone, s, prec, rnd)
        # n < 0
        rnd = reciprocal_rnd[rnd]
        flag_inverse = True
        extra_inverse = 5
        prec += extra_inverse
        n = -n
    if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)):
        prec2 = prec + 10
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, prec2)
        r = mpf_pow(s, nth, prec2, rnd)
        s = normalize(r[0], r[1], r[2], r[3], prec, rnd)
        if flag_inverse:
            return mpf_div(fone, s, prec-extra_inverse, rnd)
        else:
            return s
    # Convert to a fixed-point number with prec2 bits.
    prec2 = prec + 2*n - (prec%n)
    # a few tests indicate that
    # for 10 < n < 10**4 a bit more precision is needed
    if n > 10:
        prec2 += prec2//10
        prec2 = prec2 - prec2%n
    # Mantissa may have more bits than we need. Trim it down.
    shift = bc - prec2
    # Adjust exponents to make prec2 and exp+shift multiples of n.
    sign1 = 0
    es = exp+shift
    if es < 0:
      sign1 = 1
      es = -es
    if sign1:
      shift += es%n
    else:
      shift -= es%n
    man = rshift(man, shift)
    extra = 10
    exp1 = ((exp+shift-(n-1)*prec2)//n) - extra
    rnd_shift = 0
    if flag_inverse:
        if rnd == 'u' or rnd == 'c':
            rnd_shift = 1
    else:
        if rnd == 'd' or rnd == 'f':
            rnd_shift = 1
    man = nthroot_fixed(man+rnd_shift, n, prec2, exp1)
    s = from_man_exp(man, exp1, prec, rnd)
    if flag_inverse:
        return mpf_div(fone, s, prec-extra_inverse, rnd)
    else:
        return s
Esempio n. 47
0
def bernfrac(n):
    r"""
    Returns a tuple of integers `(p, q)` such that `p/q = B_n` exactly,
    where `B_n` denotes the `n`-th Bernoulli number. The fraction is
    always reduced to lowest terms. Note that for `n > 1` and `n` odd,
    `B_n = 0`, and `(0, 1)` is returned.

    **Examples**

    The first few Bernoulli numbers are exactly::

        >>> from mpmath import *
        >>> for n in range(15):
        ...     p, q = bernfrac(n)
        ...     print n, "%s/%s" % (p, q)
        ...
        0 1/1
        1 -1/2
        2 1/6
        3 0/1
        4 -1/30
        5 0/1
        6 1/42
        7 0/1
        8 -1/30
        9 0/1
        10 5/66
        11 0/1
        12 -691/2730
        13 0/1
        14 7/6

    This function works for arbitrarily large `n`::

        >>> p, q = bernfrac(10**4)
        >>> print q
        2338224387510
        >>> print len(str(p))
        27692
        >>> mp.dps = 15
        >>> print mpf(p) / q
        -9.04942396360948e+27677
        >>> print bernoulli(10**4)
        -9.04942396360948e+27677

    Note: :func:`bernoulli` computes a floating-point approximation
    directly, without computing the exact fraction first.
    This is much faster for large `n`.

    **Algorithm**

    :func:`bernfrac` works by computing the value of `B_n` numerically
    and then using the von Staudt-Clausen theorem [1] to reconstruct
    the exact fraction. For large `n`, this is significantly faster than
    computing `B_1, B_2, \ldots, B_2` recursively with exact arithmetic.
    The implementation has been tested for `n = 10^m` up to `m = 6`.

    In practice, :func:`bernfrac` appears to be about three times
    slower than the specialized program calcbn.exe [2]

    **References**

    1. MathWorld, von Staudt-Clausen Theorem:
       http://mathworld.wolfram.com/vonStaudt-ClausenTheorem.html

    2. The Bernoulli Number Page:
       http://www.bernoulli.org/

    """
    n = int(n)
    if n < 3:
        return [(1, 1), (-1, 2), (1, 6)][n]
    if n & 1:
        return (0, 1)
    q = 1
    for k in list_primes(n + 1):
        if not (n % (k - 1)):
            q *= k
    prec = bernoulli_size(n) + int(math.log(q, 2)) + 20
    b = mpf_bernoulli(n, prec)
    p = mpf_mul(b, from_int(q))
    pint = to_int(p, round_nearest)
    return (pint, q)
Esempio n. 48
0
         [n/6]
          ___
         \      /  n + 3  \
  S(n) =  )     |         | * B
         /___   \ n - 6*k /    n-6*k
         k = 1

For isolated large Bernoulli numbers, we use the Riemann zeta function
to calculate a numerical value for B_n. The von Staudt-Clausen theorem
can then be used to optionally find the exact value of the
numerator and denominator.
"""

bernoulli_cache = {}
f3 = from_int(3)
f6 = from_int(6)


def bernoulli_size(n):
    """Accurately estimate the size of B_n (even n > 2 only)"""
    lgn = math.log(n, 2)
    return int(2.326 + 0.5 * lgn + n * (lgn - 4.094))


BERNOULLI_PREC_CUTOFF = bernoulli_size(MAX_BERNOULLI_CACHE)


def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
Esempio n. 49
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if not exp:
            return fone
        if x == fninf:
            return fzero
        return x
    mag = bc+exp
    # Fast handling e**n. TODO: the best cutoff depends on both the
    # size of n and the precision.
    if prec > 600 and exp >= 0:
        e = mpf_e(prec+10+int(1.45*mag))
        return mpf_pow_int(e, (-1)**sign *(man<<exp), prec, rnd)
    if mag < -prec-10:
        return mpf_perturb(fone, sign, prec, rnd)
    # extra precision needs to be similar in magnitude to log_2(|x|)
    # for the modulo reduction, plus r for the error from squaring r times
    wp = prec + max(0, mag)
    if wp < 300:
        r = int(2*wp**0.4)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        # abs(x) > 1?
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series(t, wp, r)
    else:
        use_newton = False
        # put a bound on exp to avoid infinite recursion in exp_newton
        # TODO find a good bound
        if wp > LIM_EXP_SERIES2 and exp < 1000:
            if mag > 0:
                use_newton = True
            elif mag <= 0 and -mag <= ns_exp[-1]:
                i = bisect(ns_exp, -mag-1)
                if i < len(ns_exp):
                    wp0 = precs_exp[i]
                    if wp > wp0:
                        use_newton = True

        if not use_newton:
            r = int(0.7 * wp**0.5)
            if mag < 0:
                r = max(1, r + mag)
            wp += r + 20
            t = to_fixed(x, wp)
            if mag > 1:
                lg2 = ln2_fixed(wp)
                n, t = divmod(t, lg2)
            else:
                n = 0
            man = exp_series2(t, wp, r)
        else:
            # if x is very small or very large use
            # exp(x + m) = exp(x) * e**m
            if mag > LIM_MAG:
                wp += mag*10 + 100
                n = int(mag * math.log(2)) + 1
                x = mpf_sub(x, from_int(n, wp), wp)
            elif mag <= 0:
                wp += -mag*10 + 100
                if mag < 0:
                    n = int(-mag * math.log(2)) + 1
                    x = mpf_add(x, from_int(n, wp), wp)
            res = exp_newton(x, wp)
            sign, man, exp, bc = res
            if mag < 0:
                t = mpf_pow_int(mpf_e(wp), n, wp)
                res = mpf_div(res, t, wp)
                sign, man, exp, bc = res
            if mag > LIM_MAG:
                t = mpf_pow_int(mpf_e(wp), n, wp)
                res = mpf_mul(res, t, wp)
                sign, man, exp, bc = res
            return normalize(sign, man, exp, bc, prec, rnd)
    bc = bitcount(man)
    return normalize(0, man, int(-wp+n), bc, prec, rnd)
Esempio n. 50
0
def mpf_nthroot(s, n, prec, rnd=round_fast):
    """nth-root of a positive number

    Use the Newton method when faster, otherwise use x**(1/n)
    """
    sign, man, exp, bc = s
    if sign:
        raise ComplexResult("nth root of a negative number")
    if not man:
        if s == fnan:
            return fnan
        if s == fzero:
            if n > 0:
                return fzero
            if n == 0:
                return fone
            return finf
        # Infinity
        if not n:
            return fnan
        if n < 0:
            return fzero
        return finf
    flag_inverse = False
    if n < 2:
        if n == 0:
            return fone
        if n == 1:
            return mpf_pos(s, prec, rnd)
        if n == -1:
            return mpf_div(fone, s, prec, rnd)
        # n < 0
        rnd = reciprocal_rnd[rnd]
        flag_inverse = True
        extra_inverse = 5
        prec += extra_inverse
        n = -n
    if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)):
        prec2 = prec + 10
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, prec2)
        r = mpf_pow(s, nth, prec2, rnd)
        s = normalize(r[0], r[1], r[2], r[3], prec, rnd)
        if flag_inverse:
            return mpf_div(fone, s, prec-extra_inverse, rnd)
        else:
            return s
    # Convert to a fixed-point number with prec2 bits.
    prec2 = prec + 2*n - (prec%n)
    # a few tests indicate that
    # for 10 < n < 10**4 a bit more precision is needed
    if n > 10:
        prec2 += prec2//10
        prec2 = prec2 - prec2%n
    # Mantissa may have more bits than we need. Trim it down.
    shift = bc - prec2
    # Adjust exponents to make prec2 and exp+shift multiples of n.
    sign1 = 0
    es = exp+shift
    if es < 0:
        sign1 = 1
        es = -es
    if sign1:
        shift += es%n
    else:
        shift -= es%n
    man = rshift(man, shift)
    extra = 10
    exp1 = ((exp+shift-(n-1)*prec2)//n) - extra
    rnd_shift = 0
    if flag_inverse:
        if rnd == 'u' or rnd == 'c':
            rnd_shift = 1
    else:
        if rnd == 'd' or rnd == 'f':
            rnd_shift = 1
    man = nthroot_fixed(man+rnd_shift, n, prec2, exp1)
    s = from_man_exp(man, exp1, prec, rnd)
    if flag_inverse:
        return mpf_div(fone, s, prec-extra_inverse, rnd)
    else:
        return s
Esempio n. 51
0
def bernfrac(n):
    r"""
    Returns a tuple of integers `(p, q)` such that `p/q = B_n` exactly,
    where `B_n` denotes the `n`-th Bernoulli number. The fraction is
    always reduced to lowest terms. Note that for `n > 1` and `n` odd,
    `B_n = 0`, and `(0, 1)` is returned.

    **Examples**

    The first few Bernoulli numbers are exactly::

        >>> from mpmath import *
        >>> for n in range(15):
        ...     p, q = bernfrac(n)
        ...     print n, "%s/%s" % (p, q)
        ...
        0 1/1
        1 -1/2
        2 1/6
        3 0/1
        4 -1/30
        5 0/1
        6 1/42
        7 0/1
        8 -1/30
        9 0/1
        10 5/66
        11 0/1
        12 -691/2730
        13 0/1
        14 7/6

    This function works for arbitrarily large `n`::

        >>> p, q = bernfrac(10**4)
        >>> print q
        2338224387510
        >>> print len(str(p))
        27692
        >>> mp.dps = 15
        >>> print mpf(p) / q
        -9.04942396360948e+27677
        >>> print bernoulli(10**4)
        -9.04942396360948e+27677

    Note: :func:`bernoulli` computes a floating-point approximation
    directly, without computing the exact fraction first.
    This is much faster for large `n`.

    **Algorithm**

    :func:`bernfrac` works by computing the value of `B_n` numerically
    and then using the von Staudt-Clausen theorem [1] to reconstruct
    the exact fraction. For large `n`, this is significantly faster than
    computing `B_1, B_2, \ldots, B_2` recursively with exact arithmetic.
    The implementation has been tested for `n = 10^m` up to `m = 6`.

    In practice, :func:`bernfrac` appears to be about three times
    slower than the specialized program calcbn.exe [2]

    **References**

    1. MathWorld, von Staudt-Clausen Theorem:
       http://mathworld.wolfram.com/vonStaudt-ClausenTheorem.html

    2. The Bernoulli Number Page:
       http://www.bernoulli.org/

    """
    n = int(n)
    if n < 3:
        return [(1, 1), (-1, 2), (1, 6)][n]
    if n & 1:
        return (0, 1)
    q = 1
    for k in list_primes(n+1):
        if not (n % (k-1)):
            q *= k
    prec = bernoulli_size(n) + int(math.log(q,2)) + 20
    b = mpf_bernoulli(n, prec)
    p = mpf_mul(b, from_int(q))
    pint = to_int(p, round_nearest)
    return (pint, q)
Esempio n. 52
0
    """

    if a[0] == 0 and b == fzero:
        re = mpf_nthroot(a, n, prec, rnd)
        return (re, fzero)
    if n < 2:
        if n == 0:
            return mpc_one
        if n == 1:
            return mpc_pos((a, b), prec, rnd)
        if n == -1:
            return mpc_div(mpc_one, (a, b), prec, rnd)
        inverse = mpc_nthroot((a, b), -n, prec + 5, reciprocal_rnd[rnd])
        return mpc_div(mpc_one, inverse, prec, rnd)
    if n > 20:
        fn = from_int(n)
        prec2 = prec + 10
        nth = mpf_rdiv_int(1, fn, prec2)
        re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
        re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
        im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
        return re, im
    prec2 = int(1.2 * (prec + 10))
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    af = to_fixed(a, prec2)
    bf = to_fixed(b, prec2)
    re, im = mpc_nthroot_fixed(af, bf, n, prec2)
    extra = 10
    re = from_man_exp(re, -prec2 - extra, prec2, rnd)
    im = from_man_exp(im, -prec2 - extra, prec2, rnd)
Esempio n. 53
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n)*1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0:fone}
        m, bin, bin1 = state = [2, MPZ(10), MPZ_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm)  - wp
        if m < 6:
            a = MPZ_ZERO
        else:
            a = bin1
        for j in xrange(1, m//6+1):
            usign, uman, uexp, ubc = u = numbers[m-6*j]
            if usign:
                uman = -uman
            s += lshift(a*uman, uexp-sexp)
            # Update inner binomial coefficient
            j6 = 6*j
            a *= ((m-5-j6)*(m-4-j6)*(m-3-j6)*(m-2-j6)*(m-1-j6)*(m-j6))
            a //= ((4+j6)*(5+j6)*(6+j6)*(7+j6)*(8+j6)*(9+j6))
        if case == 0: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m-3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m+2)*(m+3)) // (m*(m-1))
        if m > 6:
            bin1 = bin1 * ((2+m)*(3+m)) // ((m-7)*(m-6))
        state[:] = [m, bin, bin1]
    return numbers[n]
Esempio n. 54
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n) * 1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0: fone}
        m, bin, bin1 = state = [2, MP_BASE(10), MP_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm) - wp
        if m < 6:
            a = MP_ZERO
        else:
            a = bin1
        for j in xrange(1, m // 6 + 1):
            usign, uman, uexp, ubc = u = numbers[m - 6 * j]
            if usign:
                uman = -uman
            s += lshift(a * uman, uexp - sexp)
            # Update inner binomial coefficient
            j6 = 6 * j
            a *= ((m - 5 - j6) * (m - 4 - j6) * (m - 3 - j6) * (m - 2 - j6) *
                  (m - 1 - j6) * (m - j6))
            a //= ((4 + j6) * (5 + j6) * (6 + j6) * (7 + j6) * (8 + j6) *
                   (9 + j6))
        if case == 0: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m - 3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m + 2) * (m + 3)) // (m * (m - 1))
        if m > 6:
            bin1 = bin1 * ((2 + m) * (3 + m)) // ((m - 7) * (m - 6))
        state[:] = [m, bin, bin1]
Esempio n. 55
0
         [n/6]
          ___
         \      /  n + 3  \
  S(n) =  )     |         | * B
         /___   \ n - 6*k /    n-6*k
         k = 1

For isolated large Bernoulli numbers, we use the Riemann zeta function
to calculate a numerical value for B_n. The von Staudt-Clausen theorem
can then be used to optionally find the exact value of the
numerator and denominator.
"""

bernoulli_cache = {}
f3 = from_int(3)
f6 = from_int(6)

def bernoulli_size(n):
    """Accurately estimate the size of B_n (even n > 2 only)"""
    lgn = math.log(n,2)
    return int(2.326 + 0.5*lgn + n*(lgn - 4.094))

BERNOULLI_PREC_CUTOFF = bernoulli_size(MAX_BERNOULLI_CACHE)

def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
Esempio n. 56
0
def mpf_expint(n, x, prec, rnd=round_fast, gamma=False):
    """
    E_n(x), n an integer, x real

    With gamma=True, computes Gamma(n,x)   (upper incomplete gamma function)

    Returns (real, None) if real, otherwise (real, imag)
    The imaginary part is an optional branch cut term

    """
    sign, man, exp, bc = x
    if not man:
        if gamma:
            if x == fzero:
                # Actually gamma function pole
                if n <= 0:
                    return finf
                return mpf_gamma_int(n, prec, rnd)
            if x == finf:
                return fzero, None
            # TODO: could return finite imaginary value at -inf
            return fnan, fnan
        else:
            if x == fzero:
                if n > 1:
                    return from_rational(1, n - 1, prec, rnd), None
                else:
                    return finf, None
            if x == finf:
                return fzero, None
            return fnan, fnan
    n_orig = n
    if gamma:
        n = 1 - n
    wp = prec + 20
    xmag = exp + bc
    # Beware of near-poles
    if xmag < -10:
        raise NotImplementedError
    nmag = bitcount(abs(n))
    have_imag = n > 0 and sign
    negx = mpf_neg(x)
    # Skip series if direct convergence
    if n == 0 or 2 * nmag - xmag < -wp:
        if gamma:
            v = mpf_exp(negx, wp)
            re = mpf_mul(v, mpf_pow_int(x, n_orig - 1, wp), prec, rnd)
        else:
            v = mpf_exp(negx, wp)
            re = mpf_div(v, x, prec, rnd)
    else:
        # Finite number of terms, or...
        can_use_asymptotic_series = -3 * wp < n <= 0
        # ...large enough?
        if not can_use_asymptotic_series:
            xi = abs(to_int(x))
            m = min(max(1, xi - n), 2 * wp)
            siz = -n * nmag + (m + n) * bitcount(abs(m + n)) - m * xmag - (
                144 * m // 100)
            tol = -wp - 10
            can_use_asymptotic_series = siz < tol
        if can_use_asymptotic_series:
            r = ((-MP_ONE) << (wp + wp)) // to_fixed(x, wp)
            m = n
            t = r * m
            s = MP_ONE << wp
            while m and t:
                s += t
                m += 1
                t = (m * r * t) >> wp
            v = mpf_exp(negx, wp)
            if gamma:
                # ~ exp(-x) * x^(n-1) * (1 + ...)
                v = mpf_mul(v, mpf_pow_int(x, n_orig - 1, wp), wp)
            else:
                # ~ exp(-x)/x * (1 + ...)
                v = mpf_div(v, x, wp)
            re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd)
        elif n == 1:
            re = mpf_neg(mpf_ei(negx, prec, rnd))
        elif n > 0 and n < 3 * wp:
            T1 = mpf_neg(mpf_ei(negx, wp))
            if gamma:
                if n_orig & 1:
                    T1 = mpf_neg(T1)
            else:
                T1 = mpf_mul(T1, mpf_pow_int(negx, n - 1, wp), wp)
            r = t = to_fixed(x, wp)
            facs = [1] * (n - 1)
            for k in range(1, n - 1):
                facs[k] = facs[k - 1] * k
            facs = facs[::-1]
            s = facs[0] << wp
            for k in range(1, n - 1):
                if k & 1:
                    s -= facs[k] * t
                else:
                    s += facs[k] * t
                t = (t * r) >> wp
            T2 = from_man_exp(s, -wp, wp)
            T2 = mpf_mul(T2, mpf_exp(negx, wp))
            if gamma:
                T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp)
            R = mpf_add(T1, T2)
            re = mpf_div(R, from_int(int_fac(n - 1)), prec, rnd)
        else:
            raise NotImplementedError
    if have_imag:
        M = from_int(-int_fac(n - 1))
        if gamma:
            im = mpf_div(mpf_pi(wp), M, prec, rnd)
        else:
            im = mpf_div(
                mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig - 1, wp), wp), M,
                prec, rnd)
        return re, im
    else:
        return re, None
Esempio n. 57
0
def mpc_zeta(s, prec, rnd=round_fast, alt=0, force=False):
    re, im = s
    if im == fzero:
        return mpf_zeta(re, prec, rnd, alt), fzero

    # slow for large s
    if (not force) and mpf_gt(mpc_abs(s, 10), from_int(prec)):
        raise NotImplementedError

    wp = prec + 20

    # Near pole
    r = mpc_sub(mpc_one, s, wp)
    asign, aman, aexp, abc = mpc_abs(r, 10)
    pole_dist = -2*(aexp+abc)
    if pole_dist > wp:
        if alt:
            q = mpf_ln2(wp)
            y = mpf_mul(q, mpf_euler(wp), wp)
            g = mpf_shift(mpf_mul(q, q, wp), -1)
            g = mpf_sub(y, g)
            z = mpc_mul_mpf(r, mpf_neg(g), wp)
            z = mpc_add_mpf(z, q, wp)
            return mpc_pos(z, prec, rnd)
        else:
            q = mpc_neg(mpc_div(mpc_one, r, wp))
            q = mpc_add_mpf(q, mpf_euler(wp), wp)
            return mpc_pos(q, prec, rnd)
    else:
        wp += max(0, pole_dist)

    # Reflection formula. To be rigorous, we should reflect to the left of
    # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary
    # slowdown for interesting values of s
    if mpf_lt(re, fzero):
        # XXX: could use the separate refl. formula for Dirichlet eta
        if alt:
            q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp),
                wp), wp)
            return mpc_mul(mpc_zeta(s, wp), q, prec, rnd)
        # XXX: -1 should be done exactly
        y = mpc_sub(mpc_one, s, 10*wp)
        a = mpc_gamma(y, wp)
        b = mpc_zeta(y, wp)
        c = mpc_sin_pi(mpc_shift(s, -1), wp)
        rsign, rman, rexp, rbc = re
        isign, iman, iexp, ibc = im
        mag = max(rexp+rbc, iexp+ibc)
        wp2 = wp + mag
        pi = mpf_pi(wp+wp2)
        pi2 = (mpf_shift(pi, 1), fzero)
        d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2)
        return mpc_mul(a,mpc_mul(b,mpc_mul(c,d,wp),wp),prec,rnd)
    n = int(wp/2.54 + 5)
    n += int(0.9*abs(to_int(im)))
    d = borwein_coefficients(n)
    ref = to_fixed(re, wp)
    imf = to_fixed(im, wp)
    tre = MPZ_ZERO
    tim = MPZ_ZERO
    one = MPZ_ONE << wp
    one_2wp = MPZ_ONE << (2*wp)
    critical_line = re == fhalf
    for k in xrange(n):
        log = log_int_fixed(k+1, wp)
        # A square root is much cheaper than an exp
        if critical_line:
            w = one_2wp // sqrt_fixed((k+1) << wp, wp)
        else:
            w = to_fixed(mpf_exp(from_man_exp(-ref*log, -2*wp), wp), wp)
        if k & 1:
            w *= (d[n] - d[k])
        else:
            w *= (d[k] - d[n])
        wre, wim = mpf_cos_sin(from_man_exp(-imf * log, -2*wp), wp)
        tre += (w * to_fixed(wre, wp)) >> wp
        tim += (w * to_fixed(wim, wp)) >> wp
    tre //= (-d[n])
    tim //= (-d[n])
    tre = from_man_exp(tre, -wp, wp)
    tim = from_man_exp(tim, -wp, wp)
    if alt:
        return mpc_pos((tre, tim), prec, rnd)
    else:
        q = mpc_sub(mpc_one, mpc_pow(mpc_two, r, wp), wp)
        return mpc_div((tre, tim), q, prec, rnd)